|
|
(96 intermediate revisions by 18 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:bootmii|bootmii]] and made on <tt>2016-12-23 21:33:22 UTC</tt>.<br>
| |
| : The original revision id was <tt>602790088</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 87 equal temperament, often abbreviated 87-tET, 87-EDO, or 87-ET, is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 [[cent]]s. It is solid as both a [[13-limit]] (or 15 odd limit) and as a [[5-limit]] system, and of course does well enough in any limit in between. It represents the [[13-limit]] [[tonality diamond]] both uniquely and [[consistent]]ly, and is the smallest equal temperament to do so.
| |
|
| |
|
| 87et [[tempering out|tempers out]] 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, <46 -29|, the misty comma, <26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.
| | == Theory == |
| | 87edo is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and does well enough in any limit in between. It is the smallest edo that is [[distinctly consistent]] in the [[13-odd-limit]] [[tonality diamond]], the smallest edo that is [[purely consistent]]{{idiosyncratic}} in the [[15-odd-limit]] (maintains [[relative interval error]]s of no greater than 25% on all of the first 16 [[harmonic]]s of the [[harmonic series]]). It is also a [[zeta peak integer edo]]. Since {{nowrap|87 {{=}} 3 × 29}}, 87edo shares the same perfect fifth with [[29edo]]. |
|
| |
|
| 87et is a particularly good tuning for [[Gamelismic clan|rodan temperament]]. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE tuning|POTE]] generator and is close to the 11-limit POTE generator also. Also, the 32\87 generator for [[Kleismic family|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator.
| | 87edo also shows some potential in limits beyond 13. The next four prime harmonics [[17/1|17]], [[19/1|19]], [[23/1|23]], and [[29/1|29]] are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they do not combine with [[7/1|7]], which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit. |
|
| |
|
| =Rank two temperaments=
| | It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]]. |
| ||~ Periods | |
| per
| |
| octave ||~ Generator ||~ Cents ||~ Associated
| |
| ratio ||~ Temperament ||
| |
| ||> 1 ||> 4\87 ||> 55.172 ||= 33/32 ||< [[Sensa]] ||
| |
| ||> 1 ||> 10\87 ||> 137.931 ||= 13/12 || [[Quartemka]] ||
| |
| ||> 1 ||> 14\87 ||> 193.103 ||= 28/25 || [[Luna]]/[[Hemithirds|hemithirds]] ||
| |
| ||> 1 ||> 17\87 ||> 234.483 ||= 8/7 || [[Rodan]] ||
| |
| ||> 1 ||> 23\87 ||> 317.241 ||= 6/5 || [[Hanson]]/[[countercata]]/[[metakleismic]] ||
| |
| ||> 1 ||> 32\87 ||> 441.379 ||= 9/7 || [[Clyde]] ||
| |
| ||> 1 ||> 38\87 ||> 524.138 ||= 65/48 ||< [[Widefourth]] ||
| |
| ||> 1 ||> 40\87 ||> 551.724 ||= 11/8 || [[Emkay]] ||
| |
| ||> 3 ||> 23\87 ||> 317.241 ||= 6/5 || [[Tritikleismic]] ||
| |
| ||> 29 ||> 28\87 ||> 386.207 ||= 5/4 || [[Mystery]] ||
| |
|
| |
|
| 87 can serve as a MOS in these: | | 87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061{{c}} sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479{{c}} sharp of the 13-limit CWE generator. |
|
| |
|
| [[M&N temperaments|270&87]] <<24 -9 -66 12 27 ... || | | === Prime harmonics === |
| [[M&N temperaments|494&87]] <<51 -1 -133 11 32 ... || | | In higher limits it excels as a [[subgroup]] temperament, especially as an incomplete 71-limit temperament with [[128/127]] and [[129/128]] (the subharmonic and harmonic hemicomma-sized intervals, respectively) mapped accurately to a single step. Generalizing a single step of 87edo harmonically yields harmonics 115 through 138, which when detempered is the beginning of the construction of [[Ringer scale|Ringer]] 87, thus tempering [[S-expression|S116 through S137]] by patent val and corresponding to the gravity of the fact that 87edo is a circle of [[126/125]]'s, meaning ([[126/125]])<sup>87</sup> only very slightly exceeds the octave. |
| | {{Harmonics in equal|87|columns=12}} |
| | {{Harmonics in equal|87|columns=12|start=13|collapsed=1|title=Approximation of prime harmonics in 87edo (continued)}} |
|
| |
|
| =13-limit detempering of 87et= | | === Subsets and supersets === |
| [91/90, 49/48, 40/39, 28/27, 25/24, 21/20, 35/33, 16/15, 14/13, 13/12, 12/11, 11/10, 10/9, 28/25, 9/8, 25/22, 8/7, 15/13, 7/6, 75/64, 13/11, 25/21, 6/5, 40/33, 11/9, 16/13, 26/21, 5/4, 44/35, 14/11, 32/25, 9/7, 13/10, 21/16, 33/25, 4/3, 35/26, 27/20, 15/11, 11/8, 18/13, 7/5, 45/32, 64/45, 10/7, 13/9, 16/11, 22/15, 40/27, 52/35, 3/2, 50/33, 32/21, 20/13, 14/9, 25/16, 11/7, 35/22, 8/5, 21/13, 13/8, 18/11, 33/20, 5/3, 42/25, 22/13, 75/44, 12/7, 26/15, 7/4, 44/25, 16/9, 25/14, 9/5, 20/11, 11/6, 24/13, 13/7, 15/8, 66/35, 21/11, 25/13, 27/14, 39/20, 55/28, 99/50, 2] | | 87edo contains [[3edo]] and [[29edo]] as subset edos. |
|
| |
|
| =Music= | | == Intervals == |
| | {| class="wikitable center-all right-2 left-3 left-4" |
| | |- |
| | ! rowspan="2" | # |
| | ! rowspan="2" | Cents |
| | ! colspan="2" | Approximated ratios |
| | ! colspan="2" rowspan="2" | [[Ups and downs notation]] |
| | |- |
| | ! 13-limit |
| | ! 31-limit extension |
| | |- |
| | | 0 |
| | | 0.0 |
| | | [[1/1]] |
| | | |
| | | P1 |
| | | D |
| | |- |
| | | 1 |
| | | 13.8 |
| | | [[91/90]], [[100/99]], [[126/125]] |
| | | |
| | | ^1 |
| | | ^D |
| | |- |
| | | 2 |
| | | 27.6 |
| | | ''[[49/48]]'', [[55/54]], [[64/63]], [[65/64]], [[81/80]] |
| | | |
| | | ^^1 |
| | | ^^D |
| | |- |
| | | 3 |
| | | 41.4 |
| | | [[40/39]], [[45/44]], [[50/49]] |
| | | [[39/38]] |
| | | ^<sup>3</sup>1 |
| | | ^<sup>3</sup>D/v<sup>3</sup>Eb |
| | |- |
| | | 4 |
| | | 55.2 |
| | | ''[[28/27]]'', [[33/32]], [[36/35]] |
| | | [[30/29]], [[31/30]], [[32/31]], [[34/33]] |
| | | vvm2 |
| | | vvEb |
| | |- |
| | | 5 |
| | | 69.0 |
| | | [[25/24]], [[26/25]], [[27/26]] |
| | | [[24/23]] |
| | | vm2 |
| | | vEb |
| | |- |
| | | 6 |
| | | 82.8 |
| | | [[21/20]], [[22/21]] |
| | | [[20/19]], [[23/22]] |
| | | m2 |
| | | Eb |
| | |- |
| | | 7 |
| | | 96.6 |
| | | [[35/33]] |
| | | [[18/17]], [[19/18]] |
| | | ^m2 |
| | | ^Eb |
| | |- |
| | | 8 |
| | | 110.3 |
| | | [[16/15]] |
| | | [[17/16]], [[31/29]], [[33/31]] |
| | | ^^m2 |
| | | ^^Eb |
| | |- |
| | | 9 |
| | | 124.1 |
| | | [[14/13]], [[15/14]] |
| | | [[29/27]] |
| | | vv~2 |
| | | ^<sup>3</sup>Eb |
| | |- |
| | | 10 |
| | | 137.9 |
| | | [[13/12]], [[27/25]] |
| | | [[25/23]] |
| | | v~2 |
| | | ^<sup>4</sup>Eb |
| | |- |
| | | 11 |
| | | 151.7 |
| | | [[12/11]], [[35/32]] |
| | | |
| | | ^~2 |
| | | v<sup>4</sup>E |
| | |- |
| | | 12 |
| | | 165.5 |
| | | [[11/10]] |
| | | [[32/29]], [[34/31]] |
| | | ^^~2 |
| | | v<sup>3</sup>E |
| | |- |
| | | 13 |
| | | 179.3 |
| | | [[10/9]] |
| | | |
| | | vvM2 |
| | | vvE |
| | |- |
| | | 14 |
| | | 193.1 |
| | | [[28/25]] |
| | | [[19/17]], [[29/26]] |
| | | vM2 |
| | | vE |
| | |- |
| | | 15 |
| | | 206.9 |
| | | [[9/8]] |
| | | [[26/23]] |
| | | M2 |
| | | E |
| | |- |
| | | 16 |
| | | 220.7 |
| | | [[25/22]] |
| | | [[17/15]], [[33/29]] |
| | | ^M2 |
| | | ^E |
| | |- |
| | | 17 |
| | | 234.5 |
| | | [[8/7]] |
| | | [[31/27]] |
| | | ^^M2 |
| | | ^^E |
| | |- |
| | | 18 |
| | | 248.3 |
| | | [[15/13]] |
| | | [[22/19]], [[23/20]], [[38/33]] |
| | | ^<sup>3</sup>M2/v<sup>3</sup>m3 |
| | | ^<sup>3</sup>E/v<sup>3</sup>F |
| | |- |
| | | 19 |
| | | 262.1 |
| | | [[7/6]] |
| | | [[29/25]], [[36/31]] |
| | | vvm3 |
| | | vvF |
| | |- |
| | | 20 |
| | | 275.9 |
| | | [[75/64]] |
| | | [[20/17]], [[27/23]], [[34/29]] |
| | | vm3 |
| | | vF |
| | |- |
| | | 21 |
| | | 289.7 |
| | | [[13/11]], [[32/27]], [[33/28]] |
| | | |
| | | m3 |
| | | F |
| | |- |
| | | 22 |
| | | 303.4 |
| | | [[25/21]] |
| | | [[19/16]], [[31/26]] |
| | | ^m3 |
| | | ^F |
| | |- |
| | | 23 |
| | | 317.2 |
| | | [[6/5]] |
| | | |
| | | ^^m3 |
| | | ^^F |
| | |- |
| | | 24 |
| | | 331.0 |
| | | [[40/33]] |
| | | [[23/19]], [[29/24]] |
| | | vv~3 |
| | | ^<sup>3</sup>F |
| | |- |
| | | 25 |
| | | 344.8 |
| | | [[11/9]], [[39/32]] |
| | | |
| | | v~3 |
| | | ^<sup>4</sup>F |
| | |- |
| | | 26 |
| | | 358.6 |
| | | [[16/13]], [[27/22]] |
| | | [[38/31]] |
| | | ^~3 |
| | | v<sup>4</sup>F# |
| | |- |
| | | 27 |
| | | 372.4 |
| | | [[26/21]] |
| | | [[31/25]], [[36/29]] |
| | | ^^3 |
| | | v<sup>3</sup>F# |
| | |- |
| | | 28 |
| | | 386.2 |
| | | [[5/4]] |
| | | |
| | | vvM3 |
| | | vvF# |
| | |- |
| | | 29 |
| | | 400.0 |
| | | [[44/35]] |
| | | [[24/19]], [[29/23]], [[34/27]] |
| | | vM3 |
| | | vF# |
| | |- |
| | | 30 |
| | | 413.8 |
| | | [[14/11]], [[33/26]], [[81/64]] |
| | | [[19/15]] |
| | | M3 |
| | | F# |
| | |- |
| | | 31 |
| | | 427.6 |
| | | [[32/25]] |
| | | [[23/18]] |
| | | ^M3 |
| | | ^F# |
| | |- |
| | | 32 |
| | | 441.4 |
| | | [[9/7]], [[35/27]] |
| | | [[22/17]], [[31/24]], [[40/31]] |
| | | ^^M3 |
| | | ^^F# |
| | |- |
| | | 33 |
| | | 455.2 |
| | | [[13/10]] |
| | | [[30/23]] |
| | | ^<sup>3</sup>M3/v<sup>3</sup>4 |
| | | ^<sup>3</sup>F#/v<sup>3</sup>G |
| | |- |
| | | 34 |
| | | 469.0 |
| | | [[21/16]] |
| | | [[17/13]], [[25/19]], [[38/29]] |
| | | vv4 |
| | | vvG |
| | |- |
| | | 35 |
| | | 482.8 |
| | | [[33/25]] |
| | | |
| | | v4 |
| | | vG |
| | |- |
| | | 36 |
| | | 496.6 |
| | | [[4/3]] |
| | | |
| | | P4 |
| | | G |
| | |- |
| | | 37 |
| | | 510.3 |
| | | [[35/26]] |
| | | [[31/23]] |
| | | ^4 |
| | | ^G |
| | |- |
| | | 38 |
| | | 524.1 |
| | | [[27/20]] |
| | | [[23/17]] |
| | | ^^4 |
| | | ^^G |
| | |- |
| | | 39 |
| | | 537.9 |
| | | [[15/11]] |
| | | [[26/19]], [[34/25]] |
| | | ^<sup>3</sup>4 |
| | | ^<sup>3</sup>G |
| | |- |
| | | 40 |
| | | 551.7 |
| | | [[11/8]], [[48/35]] |
| | | |
| | | ^<sup>4</sup>4 |
| | | ^<sup>4</sup>G |
| | |- |
| | | 41 |
| | | 565.5 |
| | | [[18/13]] |
| | | [[32/23]] |
| | | v<sup>4</sup>A4, vd5 |
| | | v<sup>4</sup>G#, vAb |
| | |- |
| | | 42 |
| | | 579.3 |
| | | [[7/5]] |
| | | [[46/33]] |
| | | v<sup>3</sup>A4, d5 |
| | | v<sup>3</sup>G#, Ab |
| | |- |
| | | 43 |
| | | 593.1 |
| | | [[45/32]] |
| | | [[24/17]], [[31/22]], [[38/27]] |
| | | vvA4, ^d5 |
| | | vvG#, ^Ab |
| | |- |
| | | … |
| | | … |
| | | … |
| | | … |
| | | … |
| | | … |
| | |} |
|
| |
|
| [[http://www.archive.org/details/Pianodactyl|Pianodactyl]] [[http://www.archive.org/download/Pianodactyl/pianodactyl.mp3|play]] by [[Gene Ward Smith]]</pre></div>
| | == Approximation to JI == |
| <h4>Original HTML content:</h4>
| | === Interval mappings === |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>87edo</title></head><body>The 87 equal temperament, often abbreviated 87-tET, 87-EDO, or 87-ET, is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 <a class="wiki_link" href="/cent">cent</a>s. It is solid as both a <a class="wiki_link" href="/13-limit">13-limit</a> (or 15 odd limit) and as a <a class="wiki_link" href="/5-limit">5-limit</a> system, and of course does well enough in any limit in between. It represents the <a class="wiki_link" href="/13-limit">13-limit</a> <a class="wiki_link" href="/tonality%20diamond">tonality diamond</a> both uniquely and <a class="wiki_link" href="/consistent">consistent</a>ly, and is the smallest equal temperament to do so.<br />
| | {{Q-odd-limit intervals|87}} |
| <br />
| |
| 87et <a class="wiki_link" href="/tempering%20out">tempers out</a> 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, &lt;46 -29|, the misty comma, &lt;26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.<br />
| |
| <br />
| |
| 87et is a particularly good tuning for <a class="wiki_link" href="/Gamelismic%20clan">rodan temperament</a>. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit <a class="wiki_link" href="/POTE%20tuning">POTE</a> generator and is close to the 11-limit POTE generator also. Also, the 32\87 generator for <a class="wiki_link" href="/Kleismic%20family">clyde temperament</a> is 0.04455 cents sharp of the 7-limit POTE generator.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:0 -->Rank two temperaments</h1>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | == Regular temperament properties == |
| <tr>
| | {| class="wikitable center-4 center-5 center-6" |
| <th>Periods<br />
| | |- |
| per<br />
| | ! rowspan="2" | [[Subgroup]] |
| octave<br />
| | ! rowspan="2" | [[Comma list]] |
| </th>
| | ! rowspan="2" | [[Mapping]] |
| <th>Generator<br />
| | ! rowspan="2" | Optimal<br>8ve stretch (¢) |
| </th>
| | ! colspan="2" | Tuning error |
| <th>Cents<br />
| | |- |
| </th>
| | ! [[TE error|Absolute]] (¢) |
| <th>Associated<br />
| | ! [[TE simple badness|Relative]] (%) |
| ratio<br />
| | |- |
| </th>
| | | 2.3.5 |
| <th>Temperament<br />
| | | 15625/15552, 67108864/66430125 |
| </th>
| | | {{mapping| 87 138 202 }} |
| </tr>
| | | −0.299 |
| <tr>
| | | 0.455 |
| <td style="text-align: right;">1<br />
| | | 3.30 |
| </td>
| | |- |
| <td style="text-align: right;">4\87<br />
| | | 2.3.5.7 |
| </td>
| | | 245/243, 1029/1024, 3136/3125 |
| <td style="text-align: right;">55.172<br />
| | | {{mapping| 87 138 202 244 }} |
| </td>
| | | +0.070 |
| <td style="text-align: center;">33/32<br />
| | | 0.752 |
| </td>
| | | 5.45 |
| <td style="text-align: left;"><a class="wiki_link" href="/Sensa">Sensa</a><br />
| | |- |
| </td>
| | | 2.3.5.7.11 |
| </tr>
| | | 245/243, 385/384, 441/440, 3136/3125 |
| <tr>
| | | {{mapping| 87 138 202 244 301 }} |
| <td style="text-align: right;">1<br />
| | | +0.033 |
| </td>
| | | 0.676 |
| <td style="text-align: right;">10\87<br />
| | | 4.90 |
| </td>
| | |- |
| <td style="text-align: right;">137.931<br />
| | | 2.3.5.7.11.13 |
| </td>
| | | 196/195, 245/243, 352/351, 364/363, 625/624 |
| <td style="text-align: center;">13/12<br />
| | | {{mapping| 87 138 202 244 301 322 }} |
| </td>
| | | −0.011 |
| <td><a class="wiki_link" href="/Quartemka">Quartemka</a><br />
| | | 0.625 |
| </td>
| | | 4.53 |
| </tr>
| | |- |
| <tr>
| | | 2.3.5.7.11.13.17 |
| <td style="text-align: right;">1<br />
| | | 154/153, 196/195, 245/243, 273/272, 364/363, 375/374 |
| </td>
| | | {{mapping| 87 138 202 244 301 322 356 }} |
| <td style="text-align: right;">14\87<br />
| | | −0.198 |
| </td>
| | | 0.738 |
| <td style="text-align: right;">193.103<br />
| | | 5.35 |
| </td>
| | |- |
| <td style="text-align: center;">28/25<br />
| | | 2.3.5.7.11.13.17.19 |
| </td>
| | | 154/153, 196/195, 210/209, 245/243, 273/272, 286/285, 364/363 |
| <td><a class="wiki_link" href="/Luna">Luna</a>/<a class="wiki_link" href="/Hemithirds">hemithirds</a><br />
| | | {{mapping| 87 138 202 244 301 322 356 370 }} |
| </td>
| | | −0.348 |
| </tr>
| | | 0.796 |
| <tr>
| | | 5.77 |
| <td style="text-align: right;">1<br />
| | |} |
| </td>
| |
| <td style="text-align: right;">17\87<br />
| |
| </td>
| |
| <td style="text-align: right;">234.483<br />
| |
| </td>
| |
| <td style="text-align: center;">8/7<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Rodan">Rodan</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">1<br />
| |
| </td>
| |
| <td style="text-align: right;">23\87<br />
| |
| </td>
| |
| <td style="text-align: right;">317.241<br />
| |
| </td>
| |
| <td style="text-align: center;">6/5<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Hanson">Hanson</a>/<a class="wiki_link" href="/countercata">countercata</a>/<a class="wiki_link" href="/metakleismic">metakleismic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">1<br />
| |
| </td>
| |
| <td style="text-align: right;">32\87<br />
| |
| </td>
| |
| <td style="text-align: right;">441.379<br />
| |
| </td>
| |
| <td style="text-align: center;">9/7<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Clyde">Clyde</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">1<br />
| |
| </td>
| |
| <td style="text-align: right;">38\87<br />
| |
| </td>
| |
| <td style="text-align: right;">524.138<br />
| |
| </td>
| |
| <td style="text-align: center;">65/48<br />
| |
| </td>
| |
| <td style="text-align: left;"><a class="wiki_link" href="/Widefourth">Widefourth</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">1<br />
| |
| </td>
| |
| <td style="text-align: right;">40\87<br />
| |
| </td>
| |
| <td style="text-align: right;">551.724<br />
| |
| </td>
| |
| <td style="text-align: center;">11/8<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Emkay">Emkay</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">3<br />
| |
| </td>
| |
| <td style="text-align: right;">23\87<br />
| |
| </td>
| |
| <td style="text-align: right;">317.241<br />
| |
| </td>
| |
| <td style="text-align: center;">6/5<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Tritikleismic">Tritikleismic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td style="text-align: right;">29<br />
| |
| </td>
| |
| <td style="text-align: right;">28\87<br />
| |
| </td>
| |
| <td style="text-align: right;">386.207<br />
| |
| </td>
| |
| <td style="text-align: center;">5/4<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Mystery">Mystery</a><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | === 13-limit detempering === |
| 87 can serve as a MOS in these:<br />
| | {{Main|87edo/13-limit detempering}} |
| <br />
| | |
| <a class="wiki_link" href="/M%26N%20temperaments">270&amp;87</a> &lt;&lt;24 -9 -66 12 27 ... ||<br />
| | === Rank-2 temperaments === |
| <a class="wiki_link" href="/M%26N%20temperaments">494&amp;87</a> &lt;&lt;51 -1 -133 11 32 ... ||<br />
| | {| class="wikitable center-all left-5" |
| <br />
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="x13-limit detempering of 87et"></a><!-- ws:end:WikiTextHeadingRule:2 -->13-limit detempering of 87et</h1>
| | |- |
| [91/90, 49/48, 40/39, 28/27, 25/24, 21/20, 35/33, 16/15, 14/13, 13/12, 12/11, 11/10, 10/9, 28/25, 9/8, 25/22, 8/7, 15/13, 7/6, 75/64, 13/11, 25/21, 6/5, 40/33, 11/9, 16/13, 26/21, 5/4, 44/35, 14/11, 32/25, 9/7, 13/10, 21/16, 33/25, 4/3, 35/26, 27/20, 15/11, 11/8, 18/13, 7/5, 45/32, 64/45, 10/7, 13/9, 16/11, 22/15, 40/27, 52/35, 3/2, 50/33, 32/21, 20/13, 14/9, 25/16, 11/7, 35/22, 8/5, 21/13, 13/8, 18/11, 33/20, 5/3, 42/25, 22/13, 75/44, 12/7, 26/15, 7/4, 44/25, 16/9, 25/14, 9/5, 20/11, 11/6, 24/13, 13/7, 15/8, 66/35, 21/11, 25/13, 27/14, 39/20, 55/28, 99/50, 2]<br />
| | ! Periods<br>per 8ve |
| <br />
| | ! Generator* |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:4 -->Music</h1>
| | ! Cents* |
| <br />
| | ! Associated<br>ratio* |
| <a class="wiki_link_ext" href="http://www.archive.org/details/Pianodactyl" rel="nofollow">Pianodactyl</a> <a class="wiki_link_ext" href="http://www.archive.org/download/Pianodactyl/pianodactyl.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a></body></html></pre></div>
| | ! Temperament |
| | |- |
| | | 1 |
| | | 2\87 |
| | | 27.586 |
| | | 64/63 |
| | | [[Arch]] |
| | |- |
| | | 1 |
| | | 4\87 |
| | | 55.172 |
| | | 33/32 |
| | | [[Escapade]] / [[escaped]] / [[alphaquarter]] |
| | |- |
| | | 1 |
| | | 10\87 |
| | | 137.931 |
| | | 13/12 |
| | | [[Quartemka]] |
| | |- |
| | | 1 |
| | | 14\87 |
| | | 193.103 |
| | | 28/25 |
| | | [[Luna]] / [[didacus]] / [[hemithirds]] |
| | |- |
| | | 1 |
| | | 17\87 |
| | | 234.483 |
| | | 8/7 |
| | | [[Slendric]] / [[rodan]] |
| | |- |
| | | 1 |
| | | 23\87 |
| | | 317.241 |
| | | 6/5 |
| | | [[Hanson]] / [[countercata]] / [[metakleismic]] |
| | |- |
| | | 1 |
| | | 26\87 |
| | | 358.621 |
| | | 16/13 |
| | | [[Restles]] |
| | |- |
| | | 1 |
| | | 32\87 |
| | | 441.379 |
| | | 9/7 |
| | | [[Clyde]] |
| | |- |
| | | 1 |
| | | 38\87 |
| | | 524.138 |
| | | 65/48 |
| | | [[Widefourth]] |
| | |- |
| | | 1 |
| | | 40\87 |
| | | 551.724 |
| | | 11/8 |
| | | [[Emka]] / [[emkay]] |
| | |- |
| | | 3 |
| | | 18\87<br>(11\87) |
| | | 248.276<br>(151.724) |
| | | 15/13<br>(12/11) |
| | | [[Hemimist]] |
| | |- |
| | | 3 |
| | | 23\87<br>(6\87) |
| | | 317.241<br>(82.759) |
| | | 6/5<br>(21/20) |
| | | [[Tritikleismic]] |
| | |- |
| | | 3 |
| | | 28\87<br>(1\87) |
| | | 386.207<br>(13.793) |
| | | 5/4<br>(126/125) |
| | | [[Mutt]] |
| | |- |
| | | 3 |
| | | 36\87<br>(7\87) |
| | | 496.552<br>(96.552) |
| | | 4/3<br>(18/17~19/18) |
| | | [[Misty]] |
| | |- |
| | | 29 |
| | | 28\87<br>(1\87) |
| | | 386.207<br>(13.793) |
| | | 5/4<br>(121/120) |
| | | [[Mystery]] |
| | |} |
| | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
| | |
| | 87 can serve as a mos in these: |
| | |
| | * [[Avicenna (temperament)|Avicenna]] ([[Breed|87 & 270]]) |
| | * [[Breed|87 & 494]] |
| | |
| | == Scales == |
| | === Mos scales === |
| | {{main|List of MOS scales in 87edo}} |
| | |
| | === Harmonic scales === |
| | 87edo accurately approximates the mode 8 of [[harmonic series]], and the only interval pair not distinct is 14/13 and 15/14. It can also do mode 12 decently. |
| | |
| | ==== (Mode 8) ==== |
| | {| class="wikitable center-all" |
| | |- |
| | ! Overtones |
| | | 8 |
| | | 9 |
| | | 10 |
| | | 11 |
| | | 12 |
| | | 13 |
| | | 14 |
| | | 15 |
| | | 16 |
| | |- |
| | ! JI Ratios |
| | | 1/1 |
| | | 9/8 |
| | | 5/4 |
| | | 11/8 |
| | | 3/2 |
| | | 13/8 |
| | | 7/4 |
| | | 15/8 |
| | | 2/1 |
| | |- |
| | ! … in cents |
| | | 0.0 |
| | | 203.9 |
| | | 386.3 |
| | | 551.3 |
| | | 702.0 |
| | | 840.5 |
| | | 968.8 |
| | | 1088.3 |
| | | 1200.0 |
| | |- |
| | ! Degrees in 87edo |
| | | 0 |
| | | 15 |
| | | 28 |
| | | 40 |
| | | 51 |
| | | 61 |
| | | 70 |
| | | 79 |
| | | 87 |
| | |- |
| | ! … in cents |
| | | 0.0 |
| | | 206.9 |
| | | 386.2 |
| | | 551.7 |
| | | 703.5 |
| | | 841.4 |
| | | 965.5 |
| | | 1089.7 |
| | | 1200.0 |
| | |} |
| | |
| | The scale in adjacent steps is 15, 13, 12, 11, 10, 9, 9, 8. |
| | |
| | ==== (Mode 12) ==== |
| | {| class="wikitable center-all" |
| | |- |
| | ! Overtones |
| | | 12 |
| | | 13 |
| | | 14 |
| | | 15 |
| | | 16 |
| | | 17 |
| | | 18 |
| | | 19 |
| | | 20 |
| | | 21 |
| | | 22 |
| | | 23 |
| | | 24 |
| | |- |
| | ! JI Ratios |
| | | 1/1 |
| | | 13/12 |
| | | 7/6 |
| | | 5/4 |
| | | 4/3 |
| | | 17/12 |
| | | 3/2 |
| | | 19/12 |
| | | 5/3 |
| | | 7/4 |
| | | 11/6 |
| | | 23/12 |
| | | 2/1 |
| | |- |
| | ! … in cents |
| | | 0.0 |
| | | 138.6 |
| | | 266.9 |
| | | 386.3 |
| | | 498.0 |
| | | 603.0 |
| | | 702.0 |
| | | 795.6 |
| | | 884.4 |
| | | 968.8 |
| | | 1049.4 |
| | | 1126.3 |
| | | 1200.0 |
| | |- |
| | ! Degrees in 87edo |
| | | 0 |
| | | 10 |
| | | 19 |
| | | 28 |
| | | 36 |
| | | 44 |
| | | 51 |
| | | 58 |
| | | 64 |
| | | 70 |
| | | 76 |
| | | 82 |
| | | 87 |
| | |- |
| | ! … in cents |
| | | 0.0 |
| | | 137.9 |
| | | 262.1 |
| | | 386.2 |
| | | 496.6 |
| | | 606.9 |
| | | 703.4 |
| | | 800.0 |
| | | 882.8 |
| | | 965.5 |
| | | 1048.3 |
| | | 1131.0 |
| | | 1200.0 |
| | |} |
| | |
| | The scale in adjacent steps is 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 5. |
| | |
| | 13, 15, 16, 18, 20, and 22 are close matches. |
| | |
| | 14 and 21 are flat; 17, 19, and 23 are sharp. Still decent all things considered. |
| | |
| | === Other scales === |
| | * [[Sequar5m]] |
| | |
| | == Instruments == |
| | * [[Lumatone mapping for 87edo]] |
| | * [[Skip fretting system 87 2 17]] |
| | |
| | == Music == |
| | ; [[Bryan Deister]] |
| | * [https://www.youtube.com/shorts/ecxELXmkYAs ''microtonal improvisation in 87edo''] (2025) |
| | |
| | ; [[Gene Ward Smith]] |
| | * ''Pianodactyl'' (archived 2010) – [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] – rodan[26] in 87edo tuning |
| | |
| | [[Category:Zeta|##]] <!-- 2-digit number --> |
| | [[Category:Listen]] |
| | [[Category:Clyde]] |
| | [[Category:Countercata]] |
| | [[Category:Hemithirds]] |
| | [[Category:Mystery]] |
| | [[Category:Rodan]] |
| | [[Category:Tritikleismic]] |