User:Hkm/Sandbox: Difference between revisions

Hkm (talk | contribs)
No edit summary
Hkm (talk | contribs)
No edit summary
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Editable user page}}
{{Editable user page}}


== Pages that are in the greatest need of fixes (Sadbox) ==
== Sadbox ==
Importance of fixing the page is scored out of 5 because i can't stop myself from ranking things. Some reasonably good pages, like [[31edo]], can still have a high score because they get so much attention.


=== Overly mathematical ===
=== Impractical ===
3 [[Wedgies and multivals]]
3 Wedgies


5 [[Tenney–Euclidean]]
5 TE


5 [[Otonality and utonality]] (what are the musical implications?)
5 Otonality and utonality (what are the musical implications?)


2 [[Balanced word]]
2 Balanced word


2 [[43edo]]
2 43ed2


3 [[31edo]] (needs to be especially accessible to beginners, which it is not)
3 31ed2 (beginner-friendliness)


=== Terribly written ===
=== Badly written ===
5 [[Intro to Xenharmonics]] (can be supplemented with user:hkm/Intro_page)
5 Intro to Xenharmonics (can be supplemented with user:hkm/Intro_page)


4 [[Concordance]]
4 Concordance


2 [[29edo]] (needs a clearer focus on essentially tempered chords in the 2.3.7/5.11/5.13/5 subgroup, less focus on temperaments of 29edo, and less trivia)
2 29ed2 (needs a clearer focus on essentially tempered chords in the 2.3.7/5.11/5.13/5 subgroup, less focus on temperaments of 29edo, and less trivia)


4 [[Fokker block]]
4 Periodicity block


3 [[FAQ]]
3 FAQ


=== Unnecessary ===
=== Unnecessary ===
1 [[Oodako]]
1 Oodako


1 [[Augmented_family#Trug]]
1 Trug


1 [[Oviminor]]
1 Oviminor


2 A bunch of stub pages
2 A bunch of stub pages


=== Terrible names ===
=== Badly named ===
1 [[1025/1024]]
1 1025/1024


=== Terrible concepts or designs ===
=== Badly designed ===
2 [[Ploidacot]] (this is a matter of opinion, so remove if this is too controversial--but we're forcing people to learn new number names for absolutely no reason)
2 Ploidacot (why the number names?)


=== Bad formatting ===
=== Badly formatted ===
2 Practically all edo pages <50 (algorithmically generated material, like GPVs and sagittal notations, should be moved to the GPV and sagittal pages, for example. The interval table gets to stay though)
2 Practically all edo pages <50 (algorithmically generated material, like GPVs and sagittal notations, should be moved to the GPV and sagittal pages, for example. The interval table gets to stay though)


== Badness ==
== Badness ==
We take all of the fractions greater than 1 within the temperament subgroup and map them to orthogonal Kronecker vectors in an infinite-dimensional vector space (because there are infinitely many fractions within the temperament subgroup). We plot all of our infinitely many commas on this vector space (for example, if our comma basis contains elements that generate 80/81, the vector [-4 1] in the subgroup with first coordinate corresponding to 3/2 and second coordinate 5/1 is plotted here because (3/2)^-4 * 5/1 = 80/81). We then stretch each axis (which is a linear transformation where the eigenvectors are the kronecker vectors) to have length equal to (min_axis_length + the square root of the cent error) * the sum of the numerator and denominator of the basis element, where min_axis_length is a constant and the cent error is the difference between the tempered cent value (using the tempered generators) and the real cent value. Then the score of a comma is score_persistence to the power of its 1-norm (taxicab norm), where score_persistence < 1. Yes, this is summing over infinitely many things, so instead sum over a large finite number because the series converges.
{| class="wikitable sortable" style="text-align: right;"
 
|+ Temperament Rankings
The score for a temperament is the sum of the scores of all the commas.
! style="width: 25%;" | EDO
! style="width: 25%;" | GPV
! style="width: 25%;" | Goodness
! style="width: 25%;" | Octave stretch
|-
| 1 || 0.91 || 11.8 ||  +0.00
|-
| 2 || 1.88 || 12.4 ||  +0.05
|-
| 3 || 2.91 || 14.2 ||  -5.13
|-
| 4 || 3.97 || 13.2 ||  -0.01
|-
| 5 || 5.12 || 14.8 ||  -0.00
|-
| 6 || 6.00 || 14.3 ||  -0.22
|-
| 7 || 6.91 || 16.7 ||  -0.31
|-
| 8 || 8.03 || 16.2 ||  -18.36
|-
| 9 || 9.03 || 18.0 ||  -0.12
|-
| 10 || 10.03 || 20.1 ||  +0.27
|-
| 11 || 11.00 || 16.2 ||  -2.52
|-
| 12 || 12.03 || 27.2 ||  -0.01
|-
| 13 || 12.88 || 17.9 ||  +0.43
|-
| 14 || 13.91 || 24.3 ||  +9.75
|-
| 15 || 15.06 || 26.4 ||  -4.16
|-
| 16 || 15.91 || 24.0 ||  +0.14
|-
| 17 || 17.06 || 28.7 ||  -2.47
|-
| 18 || 18.12 || 23.2 ||  -8.80
|-
| 19 || 19.03 || 32.8 ||  +3.38
|-
| 20 || 19.97 || 22.5 ||  +1.02
|-
| 21 || 20.97 || 26.5 ||  -0.73
|-
| 22 || 22.09 || 34.0 ||  -1.50
|-
| 23 || 22.88 || 25.2 ||  +8.60
|-
| 24 || 24.00 || 33.9 ||  +0.03
|-
| 25 || 25.03 || 26.0 ||  +0.69
|-
| 26 || 25.94 || 34.4 ||  +2.77
|-
| 27 || 27.12 || 36.2 ||  -4.24
|-
| 28 || 27.88 || 27.4 ||  +7.01
|-
| 29 || 28.94 || 35.5 ||  +3.21
|-
| 30 || 30.06 || 27.5 ||  -2.51
|-
| 31 || 31.00 || 40.2 ||  +0.33
|-
| 32 || 32.03 || 31.8 ||  -2.37
|-
| 33 || 32.88 || 29.6 ||  +4.40
|-
| 34 || 34.03 || 39.6 ||  -1.75
|-
| 35 || 34.94 || 32.0 ||  +2.81
|-
| 36 || 36.03 || 37.3 ||  +0.29
|-
| 37 || 37.06 || 35.9 ||  -1.00
|-
| 38 || 37.88 || 38.1 ||  +3.88
|-
| 39 || 39.06 || 38.3 ||  -3.89
|-
| 40 || 39.94 || 33.6 ||  +1.23
|-
| 41 || 41.00 || 42.7 ||  +0.14
|-
| 42 || 42.12 || 34.4 ||  -4.29
|-
| 43 || 43.09 || 39.9 ||  -1.04
|-
| 44 || 44.00 || 36.5 ||  -0.76
|-
| 45 || 44.88 || 38.4 ||  +4.01
|-
| 46 || 46.00 || 42.9 ||  +0.14
|-
| 47 || 46.91 || 33.3 ||  +1.42
|-
| 48 || 47.97 || 38.4 ||  +0.35
|-
| 49 || 49.12 || 40.1 ||  -3.48
|-
| 50 || 49.94 || 41.6 ||  +1.41
|-
| 51 || 51.06 || 37.5 ||  -2.05
|-
| 52 || 51.91 || 34.1 ||  +0.50
|-
| 53 || 53.00 || 44.1 ||  +0.08
|-
| 54 || 54.06 || 36.9 ||  -2.68
|-
| 55 || 54.88 || 38.6 ||  +2.81
|-
| 56 || 55.94 || 40.8 ||  -0.07
|-
| 57 || 56.94 || 39.3 ||  +0.72
|-
| 58 || 58.09 || 43.5 ||  -1.55
|-
| 59 || 59.09 || 35.6 ||  -1.95
|-
| 60 || 59.97 || 42.6 ||  +1.54
|-
| 61 || 61.12 || 38.5 ||  -2.54
|-
| 62 || 61.97 || 42.0 ||  +1.42
|-
| 63 || 63.03 || 42.2 ||  -0.33
|-
| 64 || 63.88 || 38.8 ||  +3.49
|-
| 65 || 65.06 || 43.2 ||  -0.56
|-
| 66 || 66.12 || 37.8 ||  -3.38
|-
| 67 || 67.09 || 40.0 ||  -0.37
|-
| 68 || 68.06 || 43.4 ||  -0.79
|-
| 69 || 68.91 || 39.5 ||  +1.86
|-
| 70 || 70.09 || 40.6 ||  -0.63
|-
| 71 || 71.12 || 38.6 ||  -2.08
|-
| 72 || 71.97 || 45.0 ||  +0.71
|-
| 73 || 73.12 || 40.6 ||  -2.32
|-
| 74 || 74.00 || 40.1 ||  -0.00
|-
| 75 || 75.09 || 41.7 ||  -1.46
|-
| 76 || 75.88 || 39.4 ||  +2.03
|-
| 77 || 76.97 || 44.0 ||  +0.21
|-
| 78 || 78.09 || 40.8 ||  -0.80
|-
| 79 || 78.91 || 41.3 ||  +1.19
|-
| 80 || 80.09 || 43.9 ||  -1.02
|-
| 81 || 80.88 || 41.2 ||  +1.28
|-
| 82 || 82.00 || 42.3 ||  +0.57
|-
| 83 || 83.12 || 39.3 ||  -2.12
|-
| 84 || 84.03 || 43.6 ||  -0.05
|-
| 85 || 85.12 || 40.8 ||  -1.89
|-
| 86 || 85.88 || 41.2 ||  +1.99
|-
| 87 || 87.00 || 44.3 ||  -0.26
|-
| 88 || 87.91 || 40.2 ||  +1.70
|-
| 89 || 89.03 || 43.2 ||  -0.33
|-
| 90 || 90.06 || 41.2 ||  -1.07
|-
| 91 || 90.88 || 42.6 ||  +1.97
|-
| 92 || 92.00 || 42.0 ||  +0.00
|-
| 93 || 92.88 || 40.9 ||  +0.86
|-
| 94 || 94.03 || 44.3 ||  +0.15
|-
| 95 || 95.09 || 42.1 ||  -1.55
|-
| 96 || 95.94 || 43.0 ||  +0.65
|-
| 97 || 97.00 || 40.9 ||  -0.03
|-
| 98 || 97.91 || 41.5 ||  +1.25
|-
| 99 || 99.06 || 44.2 ||  -0.71
|-
| 100 || 99.91 || 41.2 ||  +1.41
|-
| 101 || 100.91 || 42.0 ||  +1.52
|-
| 102 || 102.09 || 42.1 ||  -1.33
|-
| 103 || 102.94 || 44.2 ||  +0.75
|-
| 104 || 104.06 || 42.9 ||  -0.73
|-
| 105 || 104.94 || 40.1 ||  +0.39
|-
| 106 || 106.00 || 43.1 ||  +0.09
|-
| 107 || 107.12 || 40.9 ||  -1.88
|-
| 108 || 108.00 || 42.1 ||  -0.13
|-
| 109 || 109.03 || 43.0 ||  -0.03
|-
| 110 || 109.88 || 41.5 ||  +1.48
|-
| 111 || 111.00 || 44.1 ||  -0.61
|-
| 112 || 111.91 || 41.1 ||  +1.43
|-
| 113 || 112.97 || 43.8 ||  +0.39
|-
| 114 || 114.12 || 42.4 ||  -0.88
|-
| 115 || 114.97 || 42.3 ||  +0.28
|-
| 116 || 116.09 || 42.1 ||  -1.34
|-
| 117 || 116.88 || 40.5 ||  +1.62
|-
| 118 || 117.97 || 44.3 ||  +0.20
|-
| 119 || 119.12 || 40.7 ||  -1.35
|-
| 120 || 120.09 || 42.5 ||  -0.19
|-
| 121 || 121.09 || 44.1 ||  -0.74
|-
| 122 || 121.91 || 42.6 ||  +1.17
|-
| 123 || 123.09 || 42.2 ||  -0.88
|-
| 124 || 124.12 || 41.4 ||  -0.39
|-
| 125 || 124.94 || 43.8 ||  +0.54
|-
| 126 || 126.12 || 42.4 ||  -1.35
|-
| 127 || 126.91 || 42.2 ||  +0.62
|-
| 128 || 127.97 || 43.0 ||  -0.03
|-
| 129 || 128.91 || 41.4 ||  +0.94
|-
| 130 || 130.00 || 44.2 ||  -0.00
|-
| 131 || 131.03 || 41.7 ||  -0.59
|-
| 132 || 131.94 || 42.9 ||  +1.23
|-
| 133 || 133.06 || 42.9 ||  -0.50
|-
| 134 || 133.91 || 42.4 ||  +0.73
|-
| 135 || 135.12 || 42.9 ||  -0.39
|-
| 136 || 136.12 || 42.1 ||  -0.97
|-
| 137 || 137.03 || 43.5 ||  -0.06
|-
| 138 || 138.09 || 42.4 ||  -1.25
|-
| 139 || 139.00 || 41.9 ||  +0.31
|-
| 140 || 139.97 || 43.9 ||  +0.12
|}
== 128::256 ==