38edo: Difference between revisions

Wikispaces>Osmiorisbendi
**Imported revision 238638717 - Original comment: **
Sintel (talk | contribs)
Approximation to JI: -zeta peak index
 
(72 intermediate revisions by 22 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-06-24 18:35:40 UTC</tt>.<br>
: The original revision id was <tt>238638717</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="background-color: #e1e1e1; color: #008693; font-size: 110%;"&gt;38 tone equal temperament&lt;/span&gt;=


//38edo// divides the octave into 38 equal parts of 31.579 cents. Since 38 = 2*19, it can be thought of as two parallel [[19edo]]s. It tempers out the same 5-limit commas as 19, namely 81/80, 3125/3072 and 15625/15552. In the 7-limit, we can add 50/49, and tempering out 81/80 and 50/49 gives [[Meantone family|injera temperament]], for which 38 is the [[optimal patent val]]. In the 11-limit, we can add 121/120 and 176/175.
== Theory ==
Since {{nowrap|38 {{=}} 2 × 19}}, it can be thought of as two parallel [[19edo]]s. While the halving of the step size lowers [[consistency]] and leaves it only mediocre in terms of overall [[relative interval error|relative error]], the fact that the 3rd and 5th harmonics are flat by almost exactly the same amount, while the 11th is double that means there are quite a few near perfect composite ratios, such as the the [[6/5]] it shares with 19edo, plus [[11/9]], [[15/11]] & [[25/22]], (and their inversions) while a single step nears [[55/54]]; the approximation to [[11/9]] in particular should be noted for forming a 10-strong [[consistent circle]]. This gives several interesting possibilities for unusual near-just chords such as 15:18:22:25:30.  


===38-EDO Intervals:===
It [[tempering out|tempers out]] the same [[5-limit]] commas as 19edo, namely [[81/80]], [[3125/3072]] and [[15625/15552]]. In the [[7-limit]], we can add [[50/49]], and tempering out 81/80 and 50/49 gives [[injera]] temperament, for which 38 is the [[optimal patent val]]. In the [[11-limit]], we can add 121/120 and 176/175.  
|| **Step** || **Size in Cents** ||
|| 0 || 0 ||
|| 1 || 31.579 ||
|| 2 || 63.158 ||
|| 3 || 94.737 ||
|| 4 || 126.316 ||
|| 5 || 157.895 ||
|| 6 || 189.474 ||
|| 7 || 221.053 ||
|| 8 || 252.632 ||
|| 9 || 284.211 ||
|| 10 || 315.789 ||
|| 11 || 347.368 ||
|| 12 || 378.947 ||
|| 13 || 410.526 ||
|| 14 || 442.105 ||
|| 15 || 473.684 ||
|| 16 || 505.263 ||
|| 17 || 536.842 ||
|| 18 || 568.421 ||
|| 19 || 600 ||
|| 20 || 631.579 ||
|| 21 || 663.158 ||
|| 22 || 694.737 ||
|| 23 || 726.316 ||
|| 24 || 757.895 ||
|| 25 || 789.474 ||
|| 26 || 821.053 ||
|| 27 || 852.632 ||
|| 28 || 884.211 ||
|| 29 || 915.789 ||
|| 30 || 947.368 ||
|| 31 || 978.947 ||
|| 32 || 1010.526 ||
|| 33 || 1042.105 ||
|| 34 || 1073.684 ||
|| 35 || 1105.263 ||
|| 36 || 1136.842 ||
|| 37 || 1168.421 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;38edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x38 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="background-color: #e1e1e1; color: #008693; font-size: 110%;"&gt;38 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;em&gt;38edo&lt;/em&gt; divides the octave into 38 equal parts of 31.579 cents. Since 38 = 2*19, it can be thought of as two parallel &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;s. It tempers out the same 5-limit commas as 19, namely 81/80, 3125/3072 and 15625/15552. In the 7-limit, we can add 50/49, and tempering out 81/80 and 50/49 gives &lt;a class="wiki_link" href="/Meantone%20family"&gt;injera temperament&lt;/a&gt;, for which 38 is the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt;. In the 11-limit, we can add 121/120 and 176/175.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x38 tone equal temperament--38-EDO Intervals:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;38-EDO Intervals:&lt;/h3&gt;


&lt;table class="wiki_table"&gt;
Using the [[Warts|38df]] mapping, every [[prime interval]] from 3 to 19 is characterized by a flat intonation. Furthermore, the [[mapping]] of all [[19-odd-limit]] intervals in 38df aligns with their closest approximations in 38edo, excepting for 7/4 and 13/8, along with their octave complements 8/7 and 16/13, which are by definition mapped to their secondary optimal steps within 38df. In other words, all 19-odd-limit intervals are [[consistency|consistent]] within the 38df [[val]] {{val| 38 60 88 106 131 140 155 161 }}.  
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;Step&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Size in Cents&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31.579&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63.158&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;94.737&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;126.316&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;157.895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;189.474&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;221.053&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;252.632&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;284.211&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315.789&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;347.368&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;378.947&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;410.526&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;442.105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;473.684&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;505.263&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;536.842&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;568.421&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;631.579&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;663.158&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;694.737&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;726.316&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;757.895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;789.474&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;821.053&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;852.632&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;884.211&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;915.789&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;947.368&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;978.947&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1010.526&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1042.105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1073.684&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1105.263&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1136.842&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1168.421&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
The harmonic series from 1 to 20 is approximated within 38df by the sequence: {{nowrap| 38 22 16 12 10 8 8 6 6 5 5 4 4 4 4 3 3 3 3 }}
 
[[File:Harmonic_series_38df.mp3]] [[:File:Harmonic_series_38df.mp3|[Harmonic series 2-20 in 38df]]]
 
=== Prime harmonics ===
{{Harmonics in equal|38}}
 
== Intervals ==
{| class="wikitable center-1 right-2"
|-
! Step
! Cents
! 19-odd-limit ratios,<br>in 38df val
! colspan="3" | [[Ups and downs notation]]*
([[Enharmonic unisons in ups and downs notation|EUs]]: vvA1 and vvd2)
|-
| 0
| 0.0
|
| Perfect 1sn
| P1
| D
|-
| 1
| 31.6
|
| Up 1sn
| ^1
| ^D
|-
| 2
| 63.2
|
| Aug 1sn, dim 2nd
| A1, d2
| D#
|-
| 3
| 94.7
| [[20/19]], [[19/18]], [[18/17]], [[17/16]]
| Upaug 1sn, downminor 2nd
| ^A1, vm2
| ^D#, vEb
|-
| 4
| 126.3
| [[16/15]], [[15/14]], [[14/13]], [[13/12]]
| Minor 2nd
| m2
| Eb
|-
| 5
| 157.9
| [[12/11]], [[11/10]]
| Mid 2nd
| ~2
| vE
|-
| 6
| 189.5
| [[10/9]], [[19/17]], [[9/8]]
| Major 2nd
| M2
| E
|-
| 7
| 221.1
| [[17/15]]
| Upmajor 2nd
| ^M2
| ^E
|-
| 8
| 252.6
| [[8/7]], [[15/13]], [[22/19]], [[7/6]]
| Aug 2nd, Dim 3rd
| A2, d3
| E#, Fb
|-
| 9
| 284.2
| [[20/17]], [[13/11]], [[19/16]]
| Downminor 3rd
| vm3
| vF
|-
| 10
| 315.8
| [[6/5]]
| Minor 3rd
| m3
| F
|-
| 11
| 347.4
| [[17/14]], [[11/9]]
| Mid 3rd
| ~3
| ^F
|-
| 12
| 378.9
| [[16/13]], [[5/4]]
| Major 3rd
| M3
| F#
|-
| 13
| 410.5
| [[24/19]], [[19/15]], [[14/11]]
| Upmajor 3rd, Downdim 4th
| ^M3, vd4
| ^F#, vGb
|-
| 14
| 442.1
| [[9/7]], [[22/17]], [[13/10]]
| Aug 3rd, dim 4th
| A3, d4
| Gb
|-
| 15
| 473.7
| [[17/13]]
| Down 4th
| v4
| vG
|-
| 16
| 505.3
| [[4/3]]
| Perfect 4th
| P4
| G
|-
| 17
| 536.8
| [[19/14]], [[15/11]], [[26/19]], [[11/8]]
| Up 4th
| ^4
| ^G
|-
| 18
| 568.4
| [[18/13]], [[7/5]]
| Aug 4th
| A4
| G#
|-
| 19
| 600.0
| [[24/17]], [[17/12]]
| Upaug 4th, downdim 5th
| ^A4, vd5
| ^G#, vAb
|-
| 20
| 631.6
| [[10/7]], [[13/9]]
| Dim 5th
| d5
| Ab
|-
| 21
| 663.2
| [[16/11]], [[19/13]], [[22/15]], [[28/19]]
| Down 5th
| v5
| vA
|-
| 22
| 694.7
| [[3/2]]
| Perfect 5th
| P5
| A
|-
| 23
| 726.3
| [[26/17]]
| Up 5th
| ^5
| ^A
|-
| 24
| 757.9
| [[20/13]], [[17/11]], [[14/9]]
| Aug 5th, dim 6th
| A5, d6
| A#
|-
| 25
| 789.5
| [[11/7]], [[30/19]], [[19/12]]
| Upaug 5th, downminor 6th
| ^A5, vm6
| ^A#, vBb
|-
| 26
| 821.1
| [[8/5]], [[13/8]]
| Minor 6th
| m6
| Bb
|-
| 27
| 852.6
| [[18/11]], [[28/17]]
| Mid 6th
| ~6
| vB
|-
| 28
| 884.2
| [[5/3]]
| Major 6th
| M6
| B
|-
| 29
| 915.8
| [[32/19]], [[22/13]], [[17/10]]
| Upmajor 6th
| ^M6
| ^B
|-
| 30
| 947.4
| [[12/7]], [[19/11]], [[26/15]], [[7/4]]
| Aug 6th, dim 7th
| A6, d7
| B#, Cb
|-
| 31
| 978.9
| [[30/17]]
| Downminor 7th
| vm7
| vC
|-
| 32
| 1010.5
| [[16/9]], [[34/19]], [[9/5]]
| Minor 7th
| m7
| C
|-
| 33
| 1042.1
| [[20/11]], [[11/6]]
| Mid 7th
| ~7
| ^C
|-
| 34
| 1073.7
| [[24/13]], [[13/7]], [[28/15]], [[15/8]]
| Major 7th
| M7
| C#
|-
| 35
| 1105.3
| [[32/17]], [[17/9]], [[36/19]], [[19/10]]
| Upmajor 7th, Downdim 8ve
| ^M7, vd8
| ^C#, vDb
|-
| 36
| 1136.8
|
| Aug 7th, dim 8ve
| A7, d8
| Db
|-
| 37
| 1168.4
|
| Down 8ve
| v8
| vD
|-
| 38
| 1200.0
|
| Perfect 8ve
| P8
| D
|}
<nowiki/>* Ups and downs may be substituted with semi-sharps and semi-flats, respectively
 
== Notation ==
=== Ups and downs notation ===
Spoken as up, sharp, upsharp, etc. Note that up can be respelled as downsharp.
{{sharpness-sharp2a}}
 
=== Quarter-tone notation ===
Since a sharp raises by two steps, [[24edo#Notation|quarter-tone accidentals]] can also be used:
{{sharpness-sharp2}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[17edo#Sagittal notation|17]], [[24edo#Sagittal notation|24]], and [[31edo#Sagittal notation|31]], is a subset of the notation for [[76edo#Sagittal notation|76-EDO]], and is a superset of the notation for [[19edo#Sagittal notation|19-EDO]].
 
==== Evo flavor ====
<imagemap>
File:38-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 679 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 130 106 [[33/32]]
default [[File:38-EDO_Evo_Sagittal.svg]]
</imagemap>
 
==== Revo flavor ====
<imagemap>
File:38-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 703 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 130 106 [[33/32]]
default [[File:38-EDO_Revo_Sagittal.svg]]
</imagemap>
 
==== Evo-SZ flavor ====
<imagemap>
File:38-EDO_Evo-SZ_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 631 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 130 106 [[33/32]]
default [[File:38-EDO_Evo-SZ_Sagittal.svg]]
</imagemap>
 
Because it contains no Sagittal symbols, this Evo-SZ Sagittal notation is also a Stein-Zimmerman notation.
 
== Approximation to JI ==
=== Interval mappings ===
{{Q-odd-limit intervals}}
 
== Instruments ==
* [[Lumatone mapping for 38edo]]
* [[Skip fretting system 38 2 11]]
 
== Music ==
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/rewy-32BfRs ''Spirit of the Night - Secret of Mana (microtonal cover in 38edo)''] (2025)
 
; [[Claudi Meneghin]]
* [https://www.youtube.com/watch?v=Cw1Cz1ojoSw Canon at the Semitone on The Mother's Malison Theme for Cor Anglais and Violin] (2022)
 
[[Category:38edo| ]]  <!-- Main article -->
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->
[[Category:Listen]]
[[Category:Todo:add rank 2 temperaments table]]