Constant structure: Difference between revisions
Wikispaces>FREEZE No edit summary |
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
(26 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
A [[ | A [[scale]] is said to be a '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always spans the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | ||
If a scale is a constant structure, that scale can be mapped to an [[isomorphic keyboard]] or similar isomorphic instrument such that each chord with the same interval structure can be played using the same fingering shape. | |||
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | |||
< | In terms of [[Rothenberg propriety]], strictly proper scales are constant structures, and proper but not strictly proper scales are not. Improper scales generally are. However, the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not a CS. | ||
To determine if a scale is a CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]], in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval. | |||
== Examples == | |||
=== Pentatonic scales === | |||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | ||
Line 11: | Line 17: | ||
Here is the interval matrix of this scale: | Here is the interval matrix of this scale: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |- | ||
! 1/1 | |||
| | | 1/1 | ||
| | | | 9/8 | ||
| | | 5/4 | ||
| 3/2 | |||
| | | 5/3 | ||
| | | 2/1 | ||
|- | |- | ||
! 9/8 | |||
| 1/1 | |||
| | | 10/9 | ||
| | | 4/3 | ||
| | | 40/27 | ||
| | | 16/9 | ||
| 2/1 | |||
|- | |- | ||
! 5/4 | |||
| 1/1 | |||
| | | 6/5 | ||
| 4/3 | |||
| | | 8/5 | ||
| | | 9/5 | ||
| 2/1 | |||
|- | |- | ||
! 3/2 | |||
| 1/1 | |||
| | | 10/9 | ||
| 4/3 | |||
| | | 3/2 | ||
| | | 5/3 | ||
| 2/1 | |||
|- | |- | ||
! 5/3 | |||
| 1/1 | |||
| | | | 6/5 | ||
| | | | 27/20 | ||
| | 3/2 | | 3/2 | ||
| 9/5 | |||
| | | 2/1 | ||
|} | |||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five. | |||
In contrast, this pentatonic scale is ''not'' a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 | |||
Its interval matrix: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |- | ||
| | | ! 1/1 | ||
| | 1/1 | | 1/1 | ||
| | 6/5 | | 25/24 | ||
| | | | <span style="background-color: #ffcc44;">6/5</span> | ||
| | 3/2 | | 3/2 | ||
| | 9/5 | | <span style="background-color: #ffcc44;">5/3</span> | ||
| | 2/1 | | 2/1 | ||
|- | |||
! 25/24 | |||
| 1/1 | |||
| 144/125 | |||
| 36/25 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 48/25 | |||
| 2/1 | |||
|- | |||
! 6/5 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">5/3</span> | |||
| 125/72 | |||
| 2/1 | |||
|- | |||
! 3/2 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 2/1 | |||
|- | |||
! 5/3 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">6/5</span> | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 36/25 | |||
| 9/5 | |||
| 2/1 | |||
|} | |} | ||
Note that | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale is not a constant structure. | ||
=== Diatonic scales === | |||
Another example of a familiar scale that is ''not'' CS is the [[12edo]] tuning of the 7-note [[diatonic scale]]. | |||
Its interval matrix: | Its interval matrix: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |- | ||
! 0\12 | |||
| | | 0\12 | ||
| | | 2\12 | ||
| | | | 4\12 | ||
| | | | 5\12 | ||
| | | 7\12 | ||
| | | 9\12 | ||
| 11\12 | |||
| 12\12 | |||
|- | |- | ||
| | ! 2\12 | ||
| | | 0\12 | ||
| | | 2\12 | ||
| | | 3\12 | ||
| | | | 5\12 | ||
| | | 7\12 | ||
| | | 9\12 | ||
| 10\12 | |||
| 12\12 | |||
|- | |- | ||
| | ! 4\12 | ||
| | | 0\12 | ||
| | | | 1\12 | ||
| | | 3\12 | ||
| | | 5\12 | ||
| | | 7\12 | ||
| | | 8\12 | ||
| 10\12 | |||
| 12\12 | |||
|- | |- | ||
! 5\12 | |||
| | | | 0\12 | ||
| | <span style="background-color: #ffcc44;"> | | 2\12 | ||
| | | 4\12 | ||
| | | <span style="background-color: #ffcc44;">6\12</span> | ||
| | | 7\12 | ||
| | | 9\12 | ||
| 11\12 | |||
| 12\12 | |||
|- | |- | ||
| | | ! 7\12 | ||
| | | 0\12 | ||
| | | 2\12 | ||
| | | 4\12 | ||
| | | 5\12 | ||
| | | 7\12 | ||
| | | 9\12 | ||
| 10\12 | |||
| 12\12 | |||
|- | |- | ||
| | | ! 9\12 | ||
| | 1 | | 0\12 | ||
| | | | 2\12 | ||
| 3\12 | |||
| | | 5\12 | ||
| | | 7\12 | ||
| | | 8\12 | ||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 11\12 | |||
| 0\12 | |||
| 1\12 | |||
| 3\12 | |||
| 5\12 | |||
| <span style="background-color: #ffcc44;">6\12</span> | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|} | |} | ||
The highlighted intervals, from F to B and from B to F, are the same size in 12edo: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale (an “augmented fourth”); but from B to F it spans five (a “diminished fifth”). Since the same interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure. | |||
However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, [[31edo]] (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively: | |||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |- | ||
! 0\31 | |||
| | | 0\31 | ||
| | | 5\31 | ||
| | | 10\31 | ||
| | | 13\31 | ||
| | | 18\31 | ||
| | | 23\31 | ||
| | | 28\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 5\31 | |||
| 0\31 | |||
| | | 5\31 | ||
| | | 8\31 | ||
| | | 13\31 | ||
| | | 18\31 | ||
| | | 23\31 | ||
| | | 26\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 10\31 | |||
| 0\31 | |||
| | | 3\31 | ||
| | | 8\31 | ||
| | | 13\31 | ||
| | | 18\31 | ||
| | | 21\31 | ||
| | | 26\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 13\31 | |||
| 0\31 | |||
| | | 5\31 | ||
| | | 10\31 | ||
| | | <span style="background-color: #ffcc44;">15\31</span> | ||
| | | 18\31 | ||
| | | 23\31 | ||
| | | 28\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 18\31 | |||
| 0\31 | |||
| | | 5\31 | ||
| | | 10\31 | ||
| | | 13\31 | ||
| | | 18\31 | ||
| | | 23\31 | ||
| | | 26\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 23\31 | |||
| 0\31 | |||
| | | 5\31 | ||
| | | 8\31 | ||
| | | 13\31 | ||
| | | 18\31 | ||
| | | 21\31 | ||
| | | 26\31 | ||
| | | 31\31 | ||
|- | |- | ||
! 28\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| <span style="background-color: #ffcc44;">16\31</span> | |||
| 21\31 | |||
| | | 26\31 | ||
| 31\31 | |||
| | |||
| | |||
| | |||
|} | |} | ||
Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale ''is'' a constant structure. | |||
Similarly, the [[22edo]] diatonic scale, which tunes F–B wider than B–F, is ''also'' a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column: | |||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |- | ||
! 0\22 | |||
| | | 0\22 | ||
| | | 4\22 | ||
| | | 8\22 | ||
| | | 9\22 | ||
| | | 13\22 | ||
| | | 17\22 | ||
| | | 21\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 4\22 | |||
| | | 0\22 | ||
| | | 4\22 | ||
| | | 5\22 | ||
| | | 9\22 | ||
| | | 13\22 | ||
| | | 17\22 | ||
| | | 18\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 8\22 | |||
| | | 0\22 | ||
| | | 1\22 | ||
| | | 5\22 | ||
| | | 9\22 | ||
| | | 13\22 | ||
| | | 14\22 | ||
| | | 18\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 9\22 | |||
| | | 0\22 | ||
| | | 4\22 | ||
| | | 8\22 | ||
| <span style="background-color: #ffcc44;">12\22</span> | |||
| | | 13\22 | ||
| | | 17\22 | ||
| | | 21\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 13\22 | |||
| | | 0\22 | ||
| | | 4\22 | ||
| | | 8\22 | ||
| | | 9\22 | ||
| | | 13\22 | ||
| | | 17\22 | ||
| | | 18\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 17\22 | |||
| | | 0\22 | ||
| | | 4\22 | ||
| | | 5\22 | ||
| | | 9\22 | ||
| | | 13\22 | ||
| | | 14\22 | ||
| | | 18\22 | ||
| | | 22\22 | ||
|- | |- | ||
! 21\22 | |||
| | | 0\22 | ||
| | | 1\22 | ||
| | | 5\22 | ||
| | | 9\22 | ||
| <span style="background-color: #ffcc44;">10\22</span> | |||
| | | 14\22 | ||
| | | 18\22 | ||
| | | 22\22 | ||
|} | |} | ||
== Density of CS scales in EDOs == | |||
{| class="wikitable right-all" | |||
! EDO | |||
{| class="wikitable" | ! Number of CS Scales | ||
! Percent of Scales CS | |||
! Corresponding Fraction | |||
|- | |- | ||
| | | 1 | ||
| | | 1 | ||
| | | 100.0% | ||
| | | 1/1 | ||
|- | |- | ||
| | | 2 | ||
| 1 | |||
| 100.0% | |||
| 1/1 | |||
|- | |- | ||
| | 2 | | 3 | ||
| 2 | |||
| 100.0% | |||
| 1/1 | |||
|- | |- | ||
| | | 4 | ||
| 2 | |||
| | | 66.7% | ||
| | | 2/3 | ||
|- | |- | ||
| | | 5 | ||
| | | 5 | ||
| | | 83.3% | ||
| | | 5/6 | ||
|- | |- | ||
| | | 6 | ||
| | | 4 | ||
| | | 44.4% | ||
| | | 4/9 | ||
|- | |- | ||
| | | 7 | ||
| | | 11 | ||
| | | 61.1% | ||
| | | 11/18 | ||
|- | |- | ||
| | | 8 | ||
| 11 | |||
| | | 36.7% | ||
| 11/30 | |||
|- | |- | ||
| | | 9 | ||
| | | 22 | ||
| | | 39.3% | ||
| 11/28 | |||
|- | |- | ||
| | | 10 | ||
| | | 20 | ||
| | | 20.2% | ||
| | | 20/99 | ||
|- | |- | ||
| | | 11 | ||
| | | 45 | ||
| | | 24.2% | ||
| | | 15/62 | ||
|- | |- | ||
| | | 12 | ||
| | | 47 | ||
| | | 14.0% | ||
| | | 47/335 | ||
|- | |- | ||
| | | 13 | ||
| | | 85 | ||
| | | 13.5% | ||
| | | 17/126 | ||
|- | |- | ||
| | | 14 | ||
| | | 88 | ||
| | | 7.6% | ||
| | | 88/1161 | ||
|- | |- | ||
| | | 15 | ||
| | | 163 | ||
| 7.5% | |||
| | | 163/2182 | ||
|- | |- | ||
| | | 16 | ||
| | | 165 | ||
| | | 4.0% | ||
| | | 11/272 | ||
|- | |- | ||
| | | 17 | ||
| | | 294 | ||
| | | 3.8% | ||
| | | 49/1285 | ||
|- | |- | ||
| | | 18 | ||
| | | 313 | ||
| | | 2.2% | ||
| | | 313/14532 | ||
|- | |- | ||
| | | 19 | ||
| | | 534 | ||
| | | 1.9% | ||
| | | 89/4599 | ||
|- | |- | ||
| 20 | |||
| 541 | |||
| 1.0% | |||
| 541/52377 | |||
|} | |} | ||
= | == Novel terminology == | ||
An interval that occurs in a scale is ''CS-consistent''{{idiosyncratic}} if it always subtends the same number of scale steps. A scale is thus CS if and only if all its intervals are CS-consistent. This term could be useful because someone might only care about certain primes in a subgroup being CS-consistent. | |||
== See also == | |||
[http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] | * [[Gallery of CS Scales]] | ||
* [[Glossary of scale properties]] | |||
* [[epimorphic]] | |||
* [http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia) | |||
* [http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] | |||
[[Category: | [[Category:Scale]] | ||
[[Category: | [[Category:Terms]] | ||
[[Category: | [[Category:Erv Wilson]] | ||