Constant structure: Difference between revisions
Wikispaces>spt3125 **Imported revision 511009828 - Original comment: ** |
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
(38 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
A [[scale]] is said to be a '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always spans the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | |||
=Examples= | If a scale is a constant structure, that scale can be mapped to an [[isomorphic keyboard]] or similar isomorphic instrument such that each chord with the same interval structure can be played using the same fingering shape. | ||
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | |||
In terms of [[Rothenberg propriety]], strictly proper scales are constant structures, and proper but not strictly proper scales are not. Improper scales generally are. However, the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not a CS. | |||
To determine if a scale is a CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]], in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval. | |||
== Examples == | |||
=== Pentatonic scales === | |||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | ||
Here is the interval matrix of this scale: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |||
! 1/1 | |||
| 1/1 | |||
| 9/8 | |||
| 5/4 | |||
| 3/2 | |||
| 5/3 | |||
| 2/1 | |||
|- | |||
! 9/8 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 40/27 | |||
| 16/9 | |||
| 2/1 | |||
|- | |||
! 5/4 | |||
| 1/1 | |||
| 6/5 | |||
| 4/3 | |||
| 8/5 | |||
| 9/5 | |||
| 2/1 | |||
|- | |||
! 3/2 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 3/2 | |||
| 5/3 | |||
| 2/1 | |||
|- | |||
! 5/3 | |||
| 1/1 | |||
| 6/5 | |||
| 27/20 | |||
| 3/2 | |||
| 9/5 | |||
| 2/1 | |||
|} | |||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five. | |||
In contrast, this pentatonic scale is ''not'' a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 | |||
Its interval matrix: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |||
! 1/1 | |||
| 1/1 | |||
| 25/24 | |||
| <span style="background-color: #ffcc44;">6/5</span> | |||
| 3/2 | |||
| <span style="background-color: #ffcc44;">5/3</span> | |||
| 2/1 | |||
|- | |||
! 25/24 | |||
| 1/1 | |||
| 144/125 | |||
| 36/25 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 48/25 | |||
| 2/1 | |||
|- | |||
! 6/5 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">5/3</span> | |||
| 125/72 | |||
| 2/1 | |||
|- | |||
! 3/2 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 2/1 | |||
|- | |||
! 5/3 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">6/5</span> | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 36/25 | |||
| 9/5 | |||
| 2/1 | |||
|} | |||
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale is not a constant structure. | |||
=== Diatonic scales === | |||
Another example of a familiar scale that is ''not'' CS is the [[12edo]] tuning of the 7-note [[diatonic scale]]. | |||
Its interval matrix: | Its interval matrix: | ||
{| class="wikitable center-all" | |||
! | |||
< | ! 1 | ||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 11\12 | |||
| 12\12 | |||
|- | |||
! 2\12 | |||
| 0\12 | |||
| 2\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 4\12 | |||
| 0\12 | |||
| 1\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 5\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| <span style="background-color: #ffcc44;">6\12</span> | |||
| 7\12 | |||
| 9\12 | |||
| 11\12 | |||
| 12\12 | |||
|- | |||
! 7\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 9\12 | |||
| 0\12 | |||
| 2\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 11\12 | |||
| 0\12 | |||
| 1\12 | |||
| 3\12 | |||
| 5\12 | |||
| <span style="background-color: #ffcc44;">6\12</span> | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|} | |||
The highlighted intervals, from F to B and from B to F, are the same size in 12edo: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale (an “augmented fourth”); but from B to F it spans five (a “diminished fifth”). Since the same interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure. | |||
However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, [[31edo]] (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 5\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 10\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 13\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| <span style="background-color: #ffcc44;">15\31</span> | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 18\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 23\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 28\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| <span style="background-color: #ffcc44;">16\31</span> | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|} | |||
Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale ''is'' a constant structure. | |||
Similarly, the [[22edo]] diatonic scale, which tunes F–B wider than B–F, is ''also'' a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 21\22 | |||
| 22\22 | |||
|- | |||
! 4\22 | |||
| 0\22 | |||
| 4\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 8\22 | |||
| 0\22 | |||
| 1\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 9\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| <span style="background-color: #ffcc44;">12\22</span> | |||
| 13\22 | |||
| 17\22 | |||
| 21\22 | |||
| 22\22 | |||
|- | |||
! 13\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 17\22 | |||
| 0\22 | |||
| 4\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 21\22 | |||
| 0\22 | |||
| 1\22 | |||
| 5\22 | |||
| 9\22 | |||
| <span style="background-color: #ffcc44;">10\22</span> | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|} | |||
== Density of CS scales in EDOs == | |||
{| class="wikitable right-all" | |||
! EDO | |||
! Number of CS Scales | |||
! Percent of Scales CS | |||
! Corresponding Fraction | |||
|- | |||
| 1 | |||
| 1 | |||
| 100.0% | |||
| 1/1 | |||
|- | |||
| 2 | |||
| 1 | |||
| 100.0% | |||
| 1/1 | |||
|- | |||
| 3 | |||
| 2 | |||
| 100.0% | |||
| 1/1 | |||
|- | |||
| 4 | |||
| 2 | |||
| 66.7% | |||
| 2/3 | |||
|- | |||
| 5 | |||
| 5 | |||
| 83.3% | |||
| 5/6 | |||
|- | |||
| 6 | |||
| 4 | |||
| 44.4% | |||
| 4/9 | |||
|- | |||
| 7 | |||
| 11 | |||
| 61.1% | |||
| 11/18 | |||
|- | |||
| 8 | |||
| 11 | |||
| 36.7% | |||
| 11/30 | |||
|- | |||
| 9 | |||
| 22 | |||
| 39.3% | |||
| 11/28 | |||
|- | |||
| 10 | |||
| 20 | |||
| 20.2% | |||
| 20/99 | |||
|- | |||
| 11 | |||
| 45 | |||
| 24.2% | |||
| 15/62 | |||
|- | |||
| 12 | |||
| 47 | |||
| 14.0% | |||
| 47/335 | |||
|- | |||
| 13 | |||
| 85 | |||
| 13.5% | |||
| 17/126 | |||
|- | |||
| 14 | |||
| 88 | |||
| 7.6% | |||
| 88/1161 | |||
|- | |||
| 15 | |||
| 163 | |||
| 7.5% | |||
| 163/2182 | |||
|- | |||
| 16 | |||
| 165 | |||
| 4.0% | |||
| 11/272 | |||
|- | |||
| 17 | |||
| 294 | |||
| 3.8% | |||
| 49/1285 | |||
|- | |||
| 18 | |||
| 313 | |||
| 2.2% | |||
| 313/14532 | |||
|- | |||
| 19 | |||
| 534 | |||
| 1.9% | |||
| 89/4599 | |||
|- | |||
| 20 | |||
| 541 | |||
| 1.0% | |||
| 541/52377 | |||
|} | |||
== Novel terminology == | |||
An interval that occurs in a scale is ''CS-consistent''{{idiosyncratic}} if it always subtends the same number of scale steps. A scale is thus CS if and only if all its intervals are CS-consistent. This term could be useful because someone might only care about certain primes in a subgroup being CS-consistent. | |||
== See also == | |||
* [[Gallery of CS Scales]] | |||
* [[Glossary of scale properties]] | |||
* [[epimorphic]] | |||
* [http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia) | |||
* [http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] | |||
[[Category:Scale]] | |||
[[Category:Terms]] | |||
[[Category:Erv Wilson]] | |||