Ed7/3: Difference between revisions
CompactStar (talk | contribs) m CompactStar moved page User:Moremajorthanmajor/Ed7/3 to Ed7/3 over redirect: This page is large enough for mainspace, especially considering we have much shorter ED pages that are in mainspace |
m Removing from Category:Edonoi using Cat-a-lot |
||
(20 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
''' | The '''equal division of 7/3''' ('''ed7/3''') is a [[tuning]] obtained by dividing the [[7/3|septimal minor tenth (7/3)]] in a certain number of [[equal]] steps. | ||
== | == Applications == | ||
Division of 7/3 into equal parts | Division of 7/3 into equal parts does not necessarily imply directly using this interval as an [[equivalence]]. Many, though not all, ed7/3 scales have a perceptually important [[Pseudo-octave|false octave]], with various degrees of accuracy. | ||
Incidentally, one way to treat 7/3 as an equivalence is the use of the 3:4:5:(7) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to [[5/1]], here it takes two [[28/15]] to get to 7/2 (tempering out the comma 225/224). So, doing this yields 15, 19, and 34 note | The structural utility of 7/3 (or another tenth) is apparent by being the absolute widest range most generally used in popular songs{{citation needed}} (and even the range of a {{w|Dastg%C4%81h-e_M%C4%81hur|dastgah}}{{citation needed}}). | ||
== Chords and harmonies == | |||
{{main|Pseudo-traditional harmonic functions of enneatonic scale degrees}} | |||
[[:Category:9-tone scales|Enneatonic scale]]s, especially those equivalent at 7/3, can sensibly take [[tetrad]]s as the fundamental complete sonorities of a pseudo-traditional functional harmony due to their seventh degree being as structurally important as it is. Many, though not all, of these scales have a perceptually important [[Pseudo-octave|pseudo (false) octave]], with various degrees of accuracy. | |||
Incidentally, one way to treat 7/3 as an equivalence is the use of the 3:4:5:(7) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in [[meantone]]. Whereas in meantone it takes four [[3/2]] to get to [[5/1]], here it takes two [[28/15]] to get to [[7/2]] (tempering out the comma [[225/224]]). So, doing this yields 15-, 19-, and 34-note [[mos]] 2/1 apart. While the notes are rather farther apart, the scheme is uncannily similar to meantone. [[Joseph Ruhf]] named this scheme "macrobichromatic". | |||
== Middletown == | |||
{{idiosyncratic terms}} | |||
7/3 provides a fairly trivial point to split the difference between the [[octave]] and the [[tritave]], which is why Ruhf has named the region of intervals between 6 and 7 degrees of [[5edo]] the "[[Middletown valley]]". | |||
The proper [[Middletown family|Middletown temperament family]] is based on an [[enneatonic]] scale [[generator|generated]] by a third or a fifth optionally with a [[period]] of a [[Wolf interval|wolf]] fourth at most 560 [[cents]] wide) and, as is the twelfth (tritave), an alternative interval where {{w|Inversion (music) #Counterpoint|invertible counterpoint}} has classically occurred. | |||
The branches of the Middletown family are named thus: | The branches of the Middletown family are named thus: | ||
* 3&6: Tritetrachordal | * 3&6: Tritetrachordal | ||
* 4&5: Montrose (between 5\4edo and 4\3edo in particular, MOS generated by [pseudo] octaves belong to this branch) | * 4&5: Montrose (between 5\4edo and 4\3edo in particular, MOS generated by [pseudo] octaves belong to this branch) | ||
* 2&7: Terra Rubra | * 2&7: Terra Rubra | ||
The family of interlaced octatonic scale based temperaments in the "Middletown valley" is called Vesuvius (i. e. the volcano east of Naples). | The family of interlaced [[octatonic scale]]-based temperaments in the "Middletown valley" is called Vesuvius (i.e. the volcano east of Naples). | ||
The Middlebury temperament falls in the "Middletown valley", but its enneatonic scales are "generator-remainder". | The Middlebury temperament falls in the "Middletown valley", but its enneatonic scales are "[[generator-remainder]]". | ||
The temperaments neighboring Middletown proper are named thus: | The temperaments neighboring Middletown proper are named thus: | ||
* 5&6: Rosablanca | * 5&6: Rosablanca | ||
* 4&7: Saptimpun (10 1/2) | * 4&7: Saptimpun (10 1/2) | ||
* 5&7: 8bittone (Old Middetown) | * 5&7: 8bittone (Old Middetown) | ||
The [[pyrite]] tuning of [[edX]]s will turn out to divide a barely mistuned [[5/2]] of almost exactly 45\[[34edo]]. | |||
== Individual pages for ed7/3's == | |||
{| class="wikitable center-all" | |||
|+ style=white-space:nowrap | 0…99 | |||
| [[0ed7/3|0]] | |||
| [[1ed7/3|1]] | |||
| [[2ed7/3|2]] | |||
| [[3ed7/3|3]] | |||
| [[4ed7/3|4]] | |||
| [[5ed7/3|5]] | |||
| [[6ed7/3|6]] | |||
| [[7ed7/3|7]] | |||
| [[8ed7/3|8]] | |||
| [[9ed7/3|9]] | |||
|- | |||
| [[10ed7/3|10]] | |||
| [[11ed7/3|11]] | |||
| [[12ed7/3|12]] | |||
| [[13ed7/3|13]] | |||
| [[14ed7/3|14]] | |||
| [[15ed7/3|15]] | |||
| [[16ed7/3|16]] | |||
| [[17ed7/3|17]] | |||
| [[18ed7/3|18]] | |||
| [[19ed7/3|19]] | |||
|- | |||
| [[20ed7/3|20]] | |||
| [[21ed7/3|21]] | |||
| [[22ed7/3|22]] | |||
| [[23ed7/3|23]] | |||
| [[24ed7/3|24]] | |||
| [[25ed7/3|25]] | |||
| [[26ed7/3|26]] | |||
| [[27ed7/3|27]] | |||
| [[28ed7/3|28]] | |||
| [[29ed7/3|29]] | |||
|- | |||
| [[30ed7/3|30]] | |||
| [[31ed7/3|31]] | |||
| [[32ed7/3|32]] | |||
| [[33ed7/3|33]] | |||
| [[34ed7/3|34]] | |||
| [[35ed7/3|35]] | |||
| [[36ed7/3|36]] | |||
| [[37ed7/3|37]] | |||
| [[38ed7/3|38]] | |||
| [[39ed7/3|39]] | |||
|- | |||
| [[40ed7/3|40]] | |||
| [[41ed7/3|41]] | |||
| [[42ed7/3|42]] | |||
| [[43ed7/3|43]] | |||
| [[44ed7/3|44]] | |||
| [[45ed7/3|45]] | |||
| [[46ed7/3|46]] | |||
| [[47ed7/3|47]] | |||
| [[48ed7/3|48]] | |||
| [[49ed7/3|49]] | |||
|- | |||
| [[50ed7/3|50]] | |||
| [[51ed7/3|51]] | |||
| [[52ed7/3|52]] | |||
| [[53ed7/3|53]] | |||
| [[54ed7/3|54]] | |||
| [[55ed7/3|55]] | |||
| [[56ed7/3|56]] | |||
| [[57ed7/3|57]] | |||
| [[58ed7/3|58]] | |||
| [[59ed7/3|59]] | |||
|- | |||
| [[60ed7/3|60]] | |||
| [[61ed7/3|61]] | |||
| [[62ed7/3|62]] | |||
| [[63ed7/3|63]] | |||
| [[64ed7/3|64]] | |||
| [[65ed7/3|65]] | |||
| [[66ed7/3|66]] | |||
| [[67ed7/3|67]] | |||
| [[68ed7/3|68]] | |||
| [[69ed7/3|69]] | |||
|- | |||
| [[70ed7/3|70]] | |||
| [[71ed7/3|71]] | |||
| [[72ed7/3|72]] | |||
| [[73ed7/3|73]] | |||
| [[74ed7/3|74]] | |||
| [[75ed7/3|75]] | |||
| [[76ed7/3|76]] | |||
| [[77ed7/3|77]] | |||
| [[78ed7/3|78]] | |||
| [[79ed7/3|79]] | |||
|- | |||
| [[80ed7/3|80]] | |||
| [[81ed7/3|81]] | |||
| [[82ed7/3|82]] | |||
| [[83ed7/3|83]] | |||
| [[84ed7/3|84]] | |||
| [[85ed7/3|85]] | |||
| [[86ed7/3|86]] | |||
| [[87ed7/3|87]] | |||
| [[88ed7/3|88]] | |||
| [[89ed7/3|89]] | |||
|- | |||
| [[90ed7/3|90]] | |||
| [[91ed7/3|91]] | |||
| [[92ed7/3|92]] | |||
| [[93ed7/3|93]] | |||
| [[94ed7/3|94]] | |||
| [[95ed7/3|95]] | |||
| [[96ed7/3|96]] | |||
| [[97ed7/3|97]] | |||
| [[98ed7/3|98]] | |||
| [[99ed7/3|99]] | |||
|} | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style=white-space:nowrap | 100…199 | |||
| [[100ed7/3|100]] | |||
| [[101ed7/3|101]] | |||
| [[102ed7/3|102]] | |||
| [[103ed7/3|103]] | |||
| [[104ed7/3|104]] | |||
| [[105ed7/3|105]] | |||
| [[106ed7/3|106]] | |||
| [[107ed7/3|107]] | |||
| [[108ed7/3|108]] | |||
| [[109ed7/3|109]] | |||
|- | |||
| [[110ed7/3|110]] | |||
| [[111ed7/3|111]] | |||
| [[112ed7/3|112]] | |||
| [[113ed7/3|113]] | |||
| [[114ed7/3|114]] | |||
| [[115ed7/3|115]] | |||
| [[116ed7/3|116]] | |||
| [[117ed7/3|117]] | |||
| [[118ed7/3|118]] | |||
| [[119ed7/3|119]] | |||
|- | |||
| [[120ed7/3|120]] | |||
| [[121ed7/3|121]] | |||
| [[122ed7/3|122]] | |||
| [[123ed7/3|123]] | |||
| [[124ed7/3|124]] | |||
| [[125ed7/3|125]] | |||
| [[126ed7/3|126]] | |||
| [[127ed7/3|127]] | |||
| [[128ed7/3|128]] | |||
| [[129ed7/3|129]] | |||
|- | |||
| [[130ed7/3|130]] | |||
| [[131ed7/3|131]] | |||
| [[132ed7/3|132]] | |||
| [[133ed7/3|133]] | |||
| [[134ed7/3|134]] | |||
| [[135ed7/3|135]] | |||
| [[136ed7/3|136]] | |||
| [[137ed7/3|137]] | |||
| [[138ed7/3|138]] | |||
| [[139ed7/3|139]] | |||
|- | |||
| [[140ed7/3|140]] | |||
| [[141ed7/3|141]] | |||
| [[142ed7/3|142]] | |||
| [[143ed7/3|143]] | |||
| [[144ed7/3|144]] | |||
| [[145ed7/3|145]] | |||
| [[146ed7/3|146]] | |||
| [[147ed7/3|147]] | |||
| [[148ed7/3|148]] | |||
| [[149ed7/3|149]] | |||
|- | |||
| [[150ed7/3|150]] | |||
| [[151ed7/3|151]] | |||
| [[152ed7/3|152]] | |||
| [[153ed7/3|153]] | |||
| [[154ed7/3|154]] | |||
| [[155ed7/3|155]] | |||
| [[156ed7/3|156]] | |||
| [[157ed7/3|157]] | |||
| [[158ed7/3|158]] | |||
| [[159ed7/3|159]] | |||
|- | |||
| [[160ed7/3|160]] | |||
| [[161ed7/3|161]] | |||
| [[162ed7/3|162]] | |||
| [[163ed7/3|163]] | |||
| [[164ed7/3|164]] | |||
| [[165ed7/3|165]] | |||
| [[166ed7/3|166]] | |||
| [[167ed7/3|167]] | |||
| [[168ed7/3|168]] | |||
| [[169ed7/3|169]] | |||
|- | |||
| [[170ed7/3|170]] | |||
| [[171ed7/3|171]] | |||
| [[172ed7/3|172]] | |||
| [[173ed7/3|173]] | |||
| [[174ed7/3|174]] | |||
| [[175ed7/3|175]] | |||
| [[176ed7/3|176]] | |||
| [[177ed7/3|177]] | |||
| [[178ed7/3|178]] | |||
| [[179ed7/3|179]] | |||
|- | |||
| [[180ed7/3|180]] | |||
| [[181ed7/3|181]] | |||
| [[182ed7/3|182]] | |||
| [[183ed7/3|183]] | |||
| [[184ed7/3|184]] | |||
| [[185ed7/3|185]] | |||
| [[186ed7/3|186]] | |||
| [[187ed7/3|187]] | |||
| [[188ed7/3|188]] | |||
| [[189ed7/3|189]] | |||
|- | |||
| [[190ed7/3|190]] | |||
| [[191ed7/3|191]] | |||
| [[192ed7/3|192]] | |||
| [[193ed7/3|193]] | |||
| [[194ed7/3|194]] | |||
| [[195ed7/3|195]] | |||
| [[196ed7/3|196]] | |||
| [[197ed7/3|197]] | |||
| [[198ed7/3|198]] | |||
| [[199ed7/3|199]] | |||
|} | |||
[[Category:Ed7/3's| ]] | |||
<!-- main article --> | |||
[[Category:Lists of scales]] | |||
{{todo|inline=1|cleanup|explain edonoi|text=Most people do not think 7/3 sounds like an equivalence, so there must be some other reason why people are dividing it — some property ''other than'' equivalence that makes people want to divide it. Please add to this page an explanation of what that reason is... The page also needs a general overall cleanup.}} | |||