Ed12: Difference between revisions

BudjarnLambeth (talk | contribs)
Made heading style consistent with other wiki pages; added table
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Ed12''' means '''Division of the Twelfth Harmonic ([[12/1]]) into n equal parts'''.
'''Equal divisions of the 12th harmonic''' ('''ed12''') are [[tuning system|tunings]] obtained by dividing the [[12/1|12th harmonic]] in a certain number of [[equal]] steps.  


== Overview ==
The twelfth harmonic, duodecuple, or dodecatave, is particularly wide as far as [[equivalence]]s go, as there are at absolute most about 3.1 instances of the 12th harmonic within the [[human hearing range]]. This width means that the listener probably will not hear the interval as an equivalence, but instead will hear the [[pseudo-octave]] or pseudo-tritave or similar as one – this disconnect between period versus equivalence could be used by a composer to surprise their listener, in a similar way that [[13edo]] can be used to make melodies that sound like [[12edo]], until they suddenly do not.
The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-[[edo]] correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier:


{| class="wikitable"
However, using ed12's does not necessarily imply using the 12th harmonic as an interval of equivalence. The quintessential reason for using a 12th-harmonic based tuning is that it is a compromise between [[2/1|octave]] and [[3/1|twelfth]] based tunings, like an [[ed6]] – but ed12 leans more towards octaves than ed6 does. In fact, ed12's optimize for the 1:2:3:4:6:12 chord, with equal magnitudes and opposite signs of [[error]] on 3 and 4 and on 2 and 6.  
|+
!edo
!ed12
!NTSC*n
!PAL-M*n
|-
|1
|3.5849625
|3.579545 MHz
|3.575611 MHz
|-
|2
|7.169925
|7.158909
|7.151222
|-
|3
|10.7548875
|10.7383635
|10.726833
|-
|4
|14.33985
|14.317818
|14.302444
|-
|5
|17.9248125
|17.8972725
|17.878055
|-
|6
|21.509775
|21.476727
|21.453666
|-
|7
|25.0947375
|25.0561815
|25.029277
|-
|8
|28.6797
|28.635636
|28.604888
|-
|9
|32.2646625
|32.2150905
|32.180299
|-
|10
|35.849625
|35.79545
|35.75611
|-
|11
|39.4345875
|39.374
|39.331521
|-
|12
|43.01955
|42.953454
|42.907332
|-
|13
|46.6045125
|46.5329085
|46.482743
|-
|14
|50.189475
|50.112363
|50.058554
|-
|15
|53.7744375
|53.6918175
|53.634265
|-
|16
|57.3594
|57.271272
|57.209776
|-
|17
|60.9443625
|60.8507265
|60.785487
|-
|18
|64.529325
|64.430181
|64.360598
|-
|19
|68.1142875
|68.0096355
|67.936709
|-
|20
|71.69925
|71.58909
|71.51222
|-
|21
|75.2842125
|75.1685445
|75.087931
|-
|22
|78.869175
|78.747999
|78.663442
|-
|23
|82.4541375
|82.3274535
|82.239153
|-
|24
|86.0391
|85.906908
|85.814664
|-
|25
|89.6240625
|89.4863625
|89.390375
|-
|26
|93.209025
|93.065817
|92.965886
|-
|27
|96.7939875
|96.6452715
|96.541597
|-
|28
|100.37895
|100.224726
|100.117108
|-
|29
|103.9639125
|103.8041805
|103.692819
|-
|30
|107.548875
|107.38365
|107.28633
|-
|31
|111.1338375
|110.9630895
|110.894041
|-
|32
|114.7188
|114.542544
|114.437552
|-
|33
|118.3037625
|118.1219985
|118.045263
|-
|34
|121.888725
|121.701453
|121.588774
|-
|35
|125.4736875
|125.2809075
|125.096485
|-
|36
|129.05865
|128.860362
|128.739296
|-
|37
|132.6436125
|132.4398165
|132.247707
|-
|38
|136.228575
|136.019271
|135.860518
|-
|39
|139.8135375
|139.5987255
|135.398929
|-
|40
|143.3985
|143.17818
|143.02444
|-
|41
|146.41815
|146.7576345
|146.600151
|-
|42
|150.568425
|150.337089
|150.175862
|-
|43
|154.0533875
|153.9165435
|153.751373
|-
|44
|157.73835
|157.495998
|157.326884
|-
|45
|161.3233125
|161.0754525
|160.902595
|-
|46
|164.908275
|164.654907
|164.478306
|-
|47
|168.4932375
|168.2343615
|168.053817
|-
|48
|172.0782
|171.813816
|171.629328
|-
|49
|175.6631625
|175.3932705
|175.205039
|-
|50
|179.248125
|178.972725
|178.78075
|-
|51
|182.8330875
|182.5521795
|182.356261
|-
|52
|186.41805
|186.131634
|185.931772
|-
|53
|190.003125
|189.7110885
|189.507483
|-
|54
|193.597975
|193.290543
|193.083194
|-
|55
|197.1729375
|196.869975
|196.658705
|-
|56
|200.7579
|200.449452
|200.234216
|}


== Table of Ed12s ==
As such, an ed12 sometimes gives you the right amount of [[stretched and compressed tuning|stretch]] for equal temperaments whose 3 is more inaccurate than its higher [[prime interval|primes]]. Here for example, you can choose how much you wish to stretch [[31edo]] depending on your harmonic style: [[80ed6]] vs [[111ed12]].


=== 0…499 ===
== Individual pages for ed12's ==
{| class="wikitable center-all"
{| class="wikitable center-all"
|+ style=white-space:nowrap | 0…99
|+ style=white-space:nowrap | 0…99
Line 519: Line 232:
| [[199ed12|199]]
| [[199ed12|199]]
|}
|}
; 200 and beyond
* [[258ed12|258]]
<!-- Uncomment this when there are more pages
{| class="wikitable center-all mw-collapsible mw-collapsed"
{| class="wikitable center-all mw-collapsible mw-collapsed"
|+ style=white-space:nowrap | 200…299
|+ style=white-space:nowrap | 200…299
Line 631: Line 349:
| [[299ed12|299]]
| [[299ed12|299]]
|}
|}
{| class="wikitable center-all mw-collapsible mw-collapsed"
-->
|+ style=white-space:nowrap | 300…399
| [[300ed12|300]]
| [[301ed12|301]]
| [[302ed12|302]]
| [[303ed12|303]]
| [[304ed12|304]]
| [[305ed12|305]]
| [[306ed12|306]]
| [[307ed12|307]]
| [[308ed12|308]]
| [[309ed12|309]]
|-
| [[310ed12|310]]
| [[311ed12|311]]
| [[312ed12|312]]
| [[313ed12|313]]
| [[314ed12|314]]
| [[315ed12|315]]
| [[316ed12|316]]
| [[317ed12|317]]
| [[318ed12|318]]
| [[319ed12|319]]
|-
| [[320ed12|320]]
| [[321ed12|321]]
| [[322ed12|322]]
| [[323ed12|323]]
| [[324ed12|324]]
| [[325ed12|325]]
| [[326ed12|326]]
| [[327ed12|327]]
| [[328ed12|328]]
| [[329ed12|329]]
|-
| [[330ed12|330]]
| [[331ed12|331]]
| [[332ed12|332]]
| [[333ed12|333]]
| [[334ed12|334]]
| [[335ed12|335]]
| [[336ed12|336]]
| [[337ed12|337]]
| [[338ed12|338]]
| [[339ed12|339]]
|-
| [[340ed12|340]]
| [[341ed12|341]]
| [[342ed12|342]]
| [[343ed12|343]]
| [[344ed12|344]]
| [[345ed12|345]]
| [[346ed12|346]]
| [[347ed12|347]]
| [[348ed12|348]]
| [[349ed12|349]]
|-
| [[350ed12|350]]
| [[351ed12|351]]
| [[352ed12|352]]
| [[353ed12|353]]
| [[354ed12|354]]
| [[355ed12|355]]
| [[356ed12|356]]
| [[357ed12|357]]
| [[358ed12|358]]
| [[359ed12|359]]
|-
| [[360ed12|360]]
| [[361ed12|361]]
| [[362ed12|362]]
| [[363ed12|363]]
| [[364ed12|364]]
| [[365ed12|365]]
| [[366ed12|366]]
| [[367ed12|367]]
| [[368ed12|368]]
| [[369ed12|369]]
|-
| [[370ed12|370]]
| [[371ed12|371]]
| [[372ed12|372]]
| [[373ed12|373]]
| [[374ed12|374]]
| [[375ed12|375]]
| [[376ed12|376]]
| [[377ed12|377]]
| [[378ed12|378]]
| [[379ed12|379]]
|-
| [[380ed12|380]]
| [[381ed12|381]]
| [[382ed12|382]]
| [[383ed12|383]]
| [[384ed12|384]]
| [[385ed12|385]]
| [[386ed12|386]]
| [[387ed12|387]]
| [[388ed12|388]]
| [[389ed12|389]]
|-
| [[390ed12|390]]
| [[391ed12|391]]
| [[392ed12|392]]
| [[393ed12|393]]
| [[394ed12|394]]
| [[395ed12|395]]
| [[396ed12|396]]
| [[397ed12|397]]
| [[398ed12|398]]
| [[399ed12|399]]
|}
{| class="wikitable center-all mw-collapsible mw-collapsed"
|+ style=white-space:nowrap | 400…499
| [[400ed12|400]]
| [[401ed12|401]]
| [[402ed12|402]]
| [[403ed12|403]]
| [[404ed12|404]]
| [[405ed12|405]]
| [[406ed12|406]]
| [[407ed12|407]]
| [[408ed12|408]]
| [[409ed12|409]]
|-
| [[410ed12|410]]
| [[411ed12|411]]
| [[412ed12|412]]
| [[413ed12|413]]
| [[414ed12|414]]
| [[415ed12|415]]
| [[416ed12|416]]
| [[417ed12|417]]
| [[418ed12|418]]
| [[419ed12|419]]
|-
| [[420ed12|420]]
| [[421ed12|421]]
| [[422ed12|422]]
| [[423ed12|423]]
| [[424ed12|424]]
| [[425ed12|425]]
| [[426ed12|426]]
| [[427ed12|427]]
| [[428ed12|428]]
| [[429ed12|429]]
|-
| [[430ed12|430]]
| [[431ed12|431]]
| [[432ed12|432]]
| [[433ed12|433]]
| [[434ed12|434]]
| [[435ed12|435]]
| [[436ed12|436]]
| [[437ed12|437]]
| [[438ed12|438]]
| [[439ed12|439]]
|-
| [[440ed12|440]]
| [[441ed12|441]]
| [[442ed12|442]]
| [[443ed12|443]]
| [[444ed12|444]]
| [[445ed12|445]]
| [[446ed12|446]]
| [[447ed12|447]]
| [[448ed12|448]]
| [[449ed12|449]]
|-
| [[450ed12|450]]
| [[451ed12|451]]
| [[452ed12|452]]
| [[453ed12|453]]
| [[454ed12|454]]
| [[455ed12|455]]
| [[456ed12|456]]
| [[457ed12|457]]
| [[458ed12|458]]
| [[459ed12|459]]
|-
| [[460ed12|460]]
| [[461ed12|461]]
| [[462ed12|462]]
| [[463ed12|463]]
| [[464ed12|464]]
| [[465ed12|465]]
| [[466ed12|466]]
| [[467ed12|467]]
| [[468ed12|468]]
| [[469ed12|469]]
|-
| [[470ed12|470]]
| [[471ed12|471]]
| [[472ed12|472]]
| [[473ed12|473]]
| [[474ed12|474]]
| [[475ed12|475]]
| [[476ed12|476]]
| [[477ed12|477]]
| [[478ed12|478]]
| [[479ed12|479]]
|-
| [[480ed12|480]]
| [[481ed12|481]]
| [[482ed12|482]]
| [[483ed12|483]]
| [[484ed12|484]]
| [[485ed12|485]]
| [[486ed12|486]]
| [[487ed12|487]]
| [[488ed12|488]]
| [[489ed12|489]]
|-
| [[490ed12|490]]
| [[491ed12|491]]
| [[492ed12|492]]
| [[493ed12|493]]
| [[494ed12|494]]
| [[495ed12|495]]
| [[496ed12|496]]
| [[497ed12|497]]
| [[498ed12|498]]
| [[499ed12|499]]
|}
 


[[Category:Edonoi]]
[[Category:Ed12's| ]]
[[Category:Ed12]]
<!-- main article -->
[[Category:List of scales]]