|
|
(16 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| '''Ed12''' means '''Division of the Twelfth Harmonic ([[12/1]]) into n equal parts'''. | | '''Equal divisions of the 12th harmonic''' ('''ed12''') are [[tuning system|tunings]] obtained by dividing the [[12/1|12th harmonic]] in a certain number of [[equal]] steps. |
|
| |
|
| == Overview ==
| | The twelfth harmonic, duodecuple, or dodecatave, is particularly wide as far as [[equivalence]]s go, as there are at absolute most about 3.1 instances of the 12th harmonic within the [[human hearing range]]. This width means that the listener probably will not hear the interval as an equivalence, but instead will hear the [[pseudo-octave]] or pseudo-tritave or similar as one – this disconnect between period versus equivalence could be used by a composer to surprise their listener, in a similar way that [[13edo]] can be used to make melodies that sound like [[12edo]], until they suddenly do not. |
| The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-[[edo]] correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier: | |
|
| |
|
| {| class="wikitable"
| | However, using ed12's does not necessarily imply using the 12th harmonic as an interval of equivalence. The quintessential reason for using a 12th-harmonic based tuning is that it is a compromise between [[2/1|octave]] and [[3/1|twelfth]] based tunings, like an [[ed6]] – but ed12 leans more towards octaves than ed6 does. In fact, ed12's optimize for the 1:2:3:4:6:12 chord, with equal magnitudes and opposite signs of [[error]] on 3 and 4 and on 2 and 6. |
| |+
| |
| !edo
| |
| !ed12
| |
| !NTSC*n
| |
| !PAL-M*n
| |
| |-
| |
| |1
| |
| |3.5849625 | |
| |3.579545 MHz | |
| |3.575611 MHz
| |
| |-
| |
| |2
| |
| |7.169925
| |
| |7.158909
| |
| |7.151222
| |
| |-
| |
| |3
| |
| |10.7548875
| |
| |10.7383635
| |
| |10.726833
| |
| |-
| |
| |4
| |
| |14.33985
| |
| |14.317818
| |
| |14.302444
| |
| |-
| |
| |5
| |
| |17.9248125
| |
| |17.8972725
| |
| |17.878055
| |
| |-
| |
| |6
| |
| |21.509775
| |
| |21.476727
| |
| |21.453666
| |
| |-
| |
| |7
| |
| |25.0947375
| |
| |25.0561815
| |
| |25.029277
| |
| |-
| |
| |8
| |
| |28.6797
| |
| |28.635636
| |
| |28.604888
| |
| |-
| |
| |9
| |
| |32.2646625
| |
| |32.2150905
| |
| |32.180299
| |
| |-
| |
| |10
| |
| |35.849625
| |
| |35.79545
| |
| |35.75611
| |
| |-
| |
| |11
| |
| |39.4345875
| |
| |39.374
| |
| |39.331521
| |
| |-
| |
| |12
| |
| |43.01955
| |
| |42.953454
| |
| |42.907332
| |
| |-
| |
| |13
| |
| |46.6045125
| |
| |46.5329085
| |
| |46.482743
| |
| |-
| |
| |14
| |
| |50.189475
| |
| |50.112363
| |
| |50.058554
| |
| |-
| |
| |15
| |
| |53.7744375
| |
| |53.6918175
| |
| |53.634265
| |
| |-
| |
| |16
| |
| |57.3594
| |
| |57.271272
| |
| |57.209776
| |
| |-
| |
| |17
| |
| |60.9443625
| |
| |60.8507265
| |
| |60.785487
| |
| |-
| |
| |18
| |
| |64.529325
| |
| |64.430181
| |
| |64.360598
| |
| |-
| |
| |19
| |
| |68.1142875
| |
| |68.0096355
| |
| |67.936709
| |
| |-
| |
| |20
| |
| |71.69925
| |
| |71.58909
| |
| |71.51222
| |
| |-
| |
| |21
| |
| |75.2842125
| |
| |75.1685445
| |
| |75.087931
| |
| |-
| |
| |22
| |
| |78.869175
| |
| |78.747999
| |
| |78.663442
| |
| |-
| |
| |23
| |
| |82.4541375
| |
| |82.3274535
| |
| |82.239153
| |
| |-
| |
| |24
| |
| |86.0391
| |
| |85.906908
| |
| |85.814664
| |
| |-
| |
| |25
| |
| |89.6240625
| |
| |89.4863625
| |
| |89.390375
| |
| |-
| |
| |26
| |
| |93.209025
| |
| |93.065817
| |
| |92.965886
| |
| |-
| |
| |27
| |
| |96.7939875
| |
| |96.6452715
| |
| |96.541597
| |
| |-
| |
| |28
| |
| |100.37895
| |
| |100.224726
| |
| |100.117108
| |
| |-
| |
| |29
| |
| |103.9639125
| |
| |103.8041805
| |
| |103.692819
| |
| |-
| |
| |30
| |
| |107.548875
| |
| |107.38365
| |
| |107.28633
| |
| |-
| |
| |31
| |
| |111.1338375
| |
| |110.9630895
| |
| |110.894041
| |
| |-
| |
| |32
| |
| |114.7188
| |
| |114.542544
| |
| |114.437552
| |
| |-
| |
| |33
| |
| |118.3037625
| |
| |118.1219985
| |
| |118.045263
| |
| |-
| |
| |34
| |
| |121.888725
| |
| |121.701453
| |
| |121.588774
| |
| |-
| |
| |35
| |
| |125.4736875
| |
| |125.2809075
| |
| |125.096485
| |
| |-
| |
| |36
| |
| |129.05865
| |
| |128.860362
| |
| |128.739296
| |
| |-
| |
| |37
| |
| |132.6436125
| |
| |132.4398165
| |
| |132.247707
| |
| |-
| |
| |38
| |
| |136.228575
| |
| |136.019271
| |
| |135.860518
| |
| |-
| |
| |39
| |
| |139.8135375
| |
| |139.5987255
| |
| |135.398929
| |
| |-
| |
| |40
| |
| |143.3985
| |
| |143.17818
| |
| |143.02444
| |
| |-
| |
| |41
| |
| |146.41815
| |
| |146.7576345
| |
| |146.600151
| |
| |-
| |
| |42
| |
| |150.568425
| |
| |150.337089
| |
| |150.175862
| |
| |-
| |
| |43
| |
| |154.0533875
| |
| |153.9165435
| |
| |153.751373
| |
| |-
| |
| |44
| |
| |157.73835
| |
| |157.495998
| |
| |157.326884
| |
| |-
| |
| |45
| |
| |161.3233125
| |
| |161.0754525
| |
| |160.902595
| |
| |-
| |
| |46
| |
| |164.908275
| |
| |164.654907
| |
| |164.478306
| |
| |-
| |
| |47
| |
| |168.4932375
| |
| |168.2343615
| |
| |168.053817
| |
| |-
| |
| |48
| |
| |172.0782
| |
| |171.813816
| |
| |171.629328
| |
| |-
| |
| |49
| |
| |175.6631625
| |
| |175.3932705
| |
| |175.205039
| |
| |-
| |
| |50
| |
| |179.248125
| |
| |178.972725
| |
| |178.78075
| |
| |-
| |
| |51
| |
| |182.8330875
| |
| |182.5521795
| |
| |182.356261
| |
| |-
| |
| |52
| |
| |186.41805
| |
| |186.131634
| |
| |185.931772
| |
| |-
| |
| |53
| |
| |190.003125
| |
| |189.7110885
| |
| |189.507483
| |
| |-
| |
| |54
| |
| |193.597975
| |
| |193.290543
| |
| |193.083194
| |
| |-
| |
| |55
| |
| |197.1729375
| |
| |196.869975
| |
| |196.658705
| |
| |-
| |
| |56
| |
| |200.7579
| |
| |200.449452
| |
| |200.234216
| |
| |}
| |
|
| |
|
| == Table of Ed12s ==
| | As such, an ed12 sometimes gives you the right amount of [[stretched and compressed tuning|stretch]] for equal temperaments whose 3 is more inaccurate than its higher [[prime interval|primes]]. Here for example, you can choose how much you wish to stretch [[31edo]] depending on your harmonic style: [[80ed6]] vs [[111ed12]]. |
|
| |
|
| === 0…499 === | | == Individual pages for ed12's == |
| {| class="wikitable center-all" | | {| class="wikitable center-all" |
| |+ style=white-space:nowrap | 0…99 | | |+ style=white-space:nowrap | 0…99 |
Line 519: |
Line 232: |
| | [[199ed12|199]] | | | [[199ed12|199]] |
| |} | | |} |
| | |
| | ; 200 and beyond |
| | * [[258ed12|258]] |
| | |
| | <!-- Uncomment this when there are more pages |
| {| class="wikitable center-all mw-collapsible mw-collapsed" | | {| class="wikitable center-all mw-collapsible mw-collapsed" |
| |+ style=white-space:nowrap | 200…299 | | |+ style=white-space:nowrap | 200…299 |
Line 631: |
Line 349: |
| | [[299ed12|299]] | | | [[299ed12|299]] |
| |} | | |} |
| {| class="wikitable center-all mw-collapsible mw-collapsed"
| | --> |
| |+ style=white-space:nowrap | 300…399
| |
| | [[300ed12|300]]
| |
| | [[301ed12|301]]
| |
| | [[302ed12|302]]
| |
| | [[303ed12|303]]
| |
| | [[304ed12|304]]
| |
| | [[305ed12|305]]
| |
| | [[306ed12|306]]
| |
| | [[307ed12|307]]
| |
| | [[308ed12|308]]
| |
| | [[309ed12|309]]
| |
| |-
| |
| | [[310ed12|310]]
| |
| | [[311ed12|311]]
| |
| | [[312ed12|312]]
| |
| | [[313ed12|313]]
| |
| | [[314ed12|314]]
| |
| | [[315ed12|315]]
| |
| | [[316ed12|316]]
| |
| | [[317ed12|317]]
| |
| | [[318ed12|318]]
| |
| | [[319ed12|319]]
| |
| |-
| |
| | [[320ed12|320]]
| |
| | [[321ed12|321]]
| |
| | [[322ed12|322]]
| |
| | [[323ed12|323]]
| |
| | [[324ed12|324]]
| |
| | [[325ed12|325]]
| |
| | [[326ed12|326]]
| |
| | [[327ed12|327]]
| |
| | [[328ed12|328]]
| |
| | [[329ed12|329]]
| |
| |-
| |
| | [[330ed12|330]]
| |
| | [[331ed12|331]]
| |
| | [[332ed12|332]]
| |
| | [[333ed12|333]]
| |
| | [[334ed12|334]]
| |
| | [[335ed12|335]]
| |
| | [[336ed12|336]]
| |
| | [[337ed12|337]]
| |
| | [[338ed12|338]]
| |
| | [[339ed12|339]]
| |
| |-
| |
| | [[340ed12|340]]
| |
| | [[341ed12|341]]
| |
| | [[342ed12|342]]
| |
| | [[343ed12|343]]
| |
| | [[344ed12|344]]
| |
| | [[345ed12|345]]
| |
| | [[346ed12|346]]
| |
| | [[347ed12|347]]
| |
| | [[348ed12|348]]
| |
| | [[349ed12|349]]
| |
| |-
| |
| | [[350ed12|350]]
| |
| | [[351ed12|351]]
| |
| | [[352ed12|352]]
| |
| | [[353ed12|353]]
| |
| | [[354ed12|354]]
| |
| | [[355ed12|355]]
| |
| | [[356ed12|356]]
| |
| | [[357ed12|357]]
| |
| | [[358ed12|358]]
| |
| | [[359ed12|359]]
| |
| |-
| |
| | [[360ed12|360]]
| |
| | [[361ed12|361]]
| |
| | [[362ed12|362]]
| |
| | [[363ed12|363]]
| |
| | [[364ed12|364]]
| |
| | [[365ed12|365]]
| |
| | [[366ed12|366]]
| |
| | [[367ed12|367]]
| |
| | [[368ed12|368]]
| |
| | [[369ed12|369]]
| |
| |-
| |
| | [[370ed12|370]]
| |
| | [[371ed12|371]]
| |
| | [[372ed12|372]]
| |
| | [[373ed12|373]]
| |
| | [[374ed12|374]]
| |
| | [[375ed12|375]]
| |
| | [[376ed12|376]]
| |
| | [[377ed12|377]]
| |
| | [[378ed12|378]]
| |
| | [[379ed12|379]]
| |
| |-
| |
| | [[380ed12|380]]
| |
| | [[381ed12|381]]
| |
| | [[382ed12|382]]
| |
| | [[383ed12|383]]
| |
| | [[384ed12|384]]
| |
| | [[385ed12|385]]
| |
| | [[386ed12|386]]
| |
| | [[387ed12|387]]
| |
| | [[388ed12|388]]
| |
| | [[389ed12|389]]
| |
| |-
| |
| | [[390ed12|390]]
| |
| | [[391ed12|391]]
| |
| | [[392ed12|392]]
| |
| | [[393ed12|393]]
| |
| | [[394ed12|394]]
| |
| | [[395ed12|395]]
| |
| | [[396ed12|396]]
| |
| | [[397ed12|397]]
| |
| | [[398ed12|398]]
| |
| | [[399ed12|399]]
| |
| |}
| |
| {| class="wikitable center-all mw-collapsible mw-collapsed"
| |
| |+ style=white-space:nowrap | 400…499
| |
| | [[400ed12|400]]
| |
| | [[401ed12|401]]
| |
| | [[402ed12|402]]
| |
| | [[403ed12|403]]
| |
| | [[404ed12|404]]
| |
| | [[405ed12|405]]
| |
| | [[406ed12|406]]
| |
| | [[407ed12|407]]
| |
| | [[408ed12|408]]
| |
| | [[409ed12|409]]
| |
| |-
| |
| | [[410ed12|410]]
| |
| | [[411ed12|411]]
| |
| | [[412ed12|412]]
| |
| | [[413ed12|413]]
| |
| | [[414ed12|414]]
| |
| | [[415ed12|415]]
| |
| | [[416ed12|416]]
| |
| | [[417ed12|417]]
| |
| | [[418ed12|418]]
| |
| | [[419ed12|419]]
| |
| |-
| |
| | [[420ed12|420]]
| |
| | [[421ed12|421]]
| |
| | [[422ed12|422]]
| |
| | [[423ed12|423]]
| |
| | [[424ed12|424]]
| |
| | [[425ed12|425]]
| |
| | [[426ed12|426]]
| |
| | [[427ed12|427]]
| |
| | [[428ed12|428]]
| |
| | [[429ed12|429]]
| |
| |-
| |
| | [[430ed12|430]]
| |
| | [[431ed12|431]]
| |
| | [[432ed12|432]]
| |
| | [[433ed12|433]]
| |
| | [[434ed12|434]]
| |
| | [[435ed12|435]]
| |
| | [[436ed12|436]]
| |
| | [[437ed12|437]]
| |
| | [[438ed12|438]]
| |
| | [[439ed12|439]]
| |
| |-
| |
| | [[440ed12|440]]
| |
| | [[441ed12|441]]
| |
| | [[442ed12|442]]
| |
| | [[443ed12|443]]
| |
| | [[444ed12|444]]
| |
| | [[445ed12|445]]
| |
| | [[446ed12|446]]
| |
| | [[447ed12|447]]
| |
| | [[448ed12|448]]
| |
| | [[449ed12|449]]
| |
| |-
| |
| | [[450ed12|450]]
| |
| | [[451ed12|451]]
| |
| | [[452ed12|452]]
| |
| | [[453ed12|453]]
| |
| | [[454ed12|454]]
| |
| | [[455ed12|455]]
| |
| | [[456ed12|456]]
| |
| | [[457ed12|457]]
| |
| | [[458ed12|458]]
| |
| | [[459ed12|459]]
| |
| |-
| |
| | [[460ed12|460]]
| |
| | [[461ed12|461]]
| |
| | [[462ed12|462]]
| |
| | [[463ed12|463]]
| |
| | [[464ed12|464]]
| |
| | [[465ed12|465]]
| |
| | [[466ed12|466]]
| |
| | [[467ed12|467]]
| |
| | [[468ed12|468]]
| |
| | [[469ed12|469]]
| |
| |-
| |
| | [[470ed12|470]]
| |
| | [[471ed12|471]]
| |
| | [[472ed12|472]]
| |
| | [[473ed12|473]]
| |
| | [[474ed12|474]]
| |
| | [[475ed12|475]]
| |
| | [[476ed12|476]]
| |
| | [[477ed12|477]]
| |
| | [[478ed12|478]]
| |
| | [[479ed12|479]]
| |
| |-
| |
| | [[480ed12|480]]
| |
| | [[481ed12|481]]
| |
| | [[482ed12|482]]
| |
| | [[483ed12|483]]
| |
| | [[484ed12|484]]
| |
| | [[485ed12|485]]
| |
| | [[486ed12|486]]
| |
| | [[487ed12|487]]
| |
| | [[488ed12|488]]
| |
| | [[489ed12|489]]
| |
| |-
| |
| | [[490ed12|490]]
| |
| | [[491ed12|491]]
| |
| | [[492ed12|492]]
| |
| | [[493ed12|493]]
| |
| | [[494ed12|494]]
| |
| | [[495ed12|495]]
| |
| | [[496ed12|496]]
| |
| | [[497ed12|497]]
| |
| | [[498ed12|498]]
| |
| | [[499ed12|499]]
| |
| |}
| |
| | |
|
| |
|
| [[Category:Edonoi]] | | [[Category:Ed12's| ]] |
| [[Category:Ed12]] | | <!-- main article --> |
| | [[Category:List of scales]] |