|
|
(16 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | '''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent]]s each, corresponding to 20.1898 [[edo]]. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth [[the Riemann zeta function and tuning#Removing primes|zeta peak tritave division]]. |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-04 14:06:49 UTC</tt>.<br>
| | |
| : The original revision id was <tt>250636330</tt>.<br>
| | == Harmonics == |
| : The revision comment was: <tt></tt><br>
| | {{Harmonics in equal |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | steps = 32 |
| <h4>Original Wikitext content:</h4>
| | | num = 3 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//32edt// means the division of 3, the tritave, into 32 equal parts of 59.463 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth [[The Riemann Zeta Function and Tuning#Removing primes|zeta peak tritave division]].</pre></div>
| | | denom = 1 |
| <h4>Original HTML content:</h4>
| | | columns = 9 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>32edt</title></head><body><em>32edt</em> means the division of 3, the tritave, into 32 equal parts of 59.463 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing primes">zeta peak tritave division</a>.</body></html></pre></div>
| | | intervals = prime |
| | }} |
| | {{Harmonics in equal |
| | | steps = 32 |
| | | num = 3 |
| | | denom = 1 |
| | | start = 12 |
| | | collapsed = 1 |
| | | intervals = odd |
| | }} |
| | |
| | == Intervals == |
| | {| class="wikitable" |
| | |- |
| | ! Step |
| | ! [[Cent]]s |
| | ! [[Hekt]]s |
| | |- |
| | | 1 |
| | | 59.436 |
| | | 40.625 |
| | |- |
| | | 2 |
| | | 118.872 |
| | | 81.25 |
| | |- |
| | | 3 |
| | | 178.308 |
| | | 121.875 |
| | |- |
| | | 4 |
| | | 237.744 |
| | | 162.5 |
| | |- |
| | | 5 |
| | | 297.180 |
| | | 203.125 |
| | |- |
| | | 6 |
| | | 356.617 |
| | | 243.75 |
| | |- |
| | | 7 |
| | | 416.053 |
| | | 284.375 |
| | |- |
| | | 8 |
| | | 475.489 |
| | | 325 |
| | |- |
| | | 9 |
| | | 534.925 |
| | | 365.625 |
| | |- |
| | | 10 |
| | | 594.361 |
| | | 406.25 |
| | |- |
| | | 11 |
| | | 653.797 |
| | | 446.875 |
| | |- |
| | | 12 |
| | | 713.233 |
| | | 487.5 |
| | |- |
| | | 13 |
| | | 772.669 |
| | | 528.125 |
| | |- |
| | | 14 |
| | | 832.105 |
| | | 568.75 |
| | |- |
| | | 15 |
| | | 891.541 |
| | | 609.375 |
| | |- |
| | | 16 |
| | | 950.978 |
| | | 650 |
| | |- |
| | | 17 |
| | | 1010.414 |
| | | 690.625 |
| | |- |
| | | 18 |
| | | 1069.85 |
| | | 731.25 |
| | |- |
| | | 19 |
| | | 1129.286 |
| | | 774.875 |
| | |- |
| | | 20 |
| | | 1188.722 |
| | | 812.5 |
| | |- |
| | | 21 |
| | | 1248.158 |
| | | 853.125. |
| | |- |
| | | 22 |
| | | 1307.594 |
| | | 893.75 |
| | |- |
| | | 23 |
| | | 1367.03 |
| | | 934.375 |
| | |- |
| | | 24 |
| | | 1426.466 |
| | | 975 |
| | |- |
| | | 25 |
| | | 1485.902 |
| | | 1015.625 |
| | |- |
| | | 26 |
| | | 1545.338 |
| | | 1056.25 |
| | |- |
| | | 27 |
| | | 1604.775 |
| | | 1096.875 |
| | |- |
| | | 28 |
| | | 1664.211 |
| | | 1137.5 |
| | |- |
| | | 29 |
| | | 1723.647 |
| | | 1178.125 |
| | |- |
| | | 30 |
| | | 1783.083 |
| | | 1218.75 |
| | |- |
| | | 31 |
| | | 1842.519 |
| | | 1259.375 |
| | |- |
| | | 32 |
| | | 1901.955 |
| | | 1300 |
| | |} |
| | |
| | {{todo|expand}} |