32edt: Difference between revisions

Wikispaces>guest
**Imported revision 332560034 - Original comment: **
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(14 intermediate revisions by 9 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
'''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent]]s each, corresponding to 20.1898 [[edo]]. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth [[the Riemann zeta function and tuning#Removing primes|zeta peak tritave division]].
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-09 13:00:22 UTC</tt>.<br>
: The original revision id was <tt>332560034</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//32edt// means the division of 3, the tritave, into 32 equal parts of 59.436 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth [[The Riemann Zeta Function and Tuning#Removing%20primes|zeta peak tritave division]].


=&lt;span style="font-size: 1.4em;"&gt;Intervals&lt;/span&gt;=  
== Harmonics ==
|| 1 || 59.43609¢ ||
{{Harmonics in equal
|| 2 || 118.87219 ||
| steps = 32
|| 3 || 178.30828 ||
| num = 3
|| 4 || 237.74438 ||
| denom = 1
|| 5 || 297.18047 ||
| columns = 9
|| 6 || 356.61656 ||
| intervals = prime
|| 7 || 416.05266 ||
}}
|| 8 || 475.48875 ||
{{Harmonics in equal
|| 9 || 534.92484 ||
| steps = 32
|| 10 || 594.36094 ||
| num = 3
|| 11 || 653.79703 ||
| denom = 1
|| 12 || 713.23312 ||
| start = 12
|| 13 || 772.66922 ||
| collapsed = 1
|| 14 || 832.10531 ||
| intervals = odd
|| 15 || 891.54141 ||
}}
|| 16 || 950.9775 ||
|| 17 || 1010.41359 ||
|| 18 || 1069.84969 ||
|| 19 || 1129.28578 ||
|| 20 || 1188.72188 ||
|| 21 || 1248.15797 ||
|| 22 || 1307.59406 ||
|| 23 || 1367.03016 ||
|| 24 || 1426.46625 ||
|| 25 || 1485.90234 ||
|| 26 || 1545.33844 ||
|| 27 || 1604.77453 ||
|| 28 || 1664.21063 ||
|| 29 || 1723.64672 ||
|| 30 || 1783.08281 ||
|| 31 || 1842.51891 ||
|| 32 || 1901.955 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;32edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;32edt&lt;/em&gt; means the division of 3, the tritave, into 32 equal parts of 59.436 cents each, corresponding to 20.190 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13 and 17 are all sharp. It tempers out 3125/3087 in the 7-limit, 891/875, 1331/1323 and 2475/2401 in the 11-limit, 275/273, 351/343, 729/714, 847/845 and 1575/1573 in the 13-limit, 121/119, 189/197 and 225/221 in the 17-limit. It is the eighth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing%20primes"&gt;zeta peak tritave division&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="font-size: 1.4em;"&gt;Intervals&lt;/span&gt;&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
== Intervals ==
    &lt;tr&gt;
{| class="wikitable"
        &lt;td&gt;1&lt;br /&gt;
|-
&lt;/td&gt;
! Step
        &lt;td&gt;59.43609¢&lt;br /&gt;
! [[Cent]]s
&lt;/td&gt;
! [[Hekt]]s
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 1
        &lt;td&gt;2&lt;br /&gt;
| 59.436
&lt;/td&gt;
| 40.625
        &lt;td&gt;118.87219&lt;br /&gt;
|-
&lt;/td&gt;
| 2
    &lt;/tr&gt;
| 118.872
    &lt;tr&gt;
| 81.25
        &lt;td&gt;3&lt;br /&gt;
|-
&lt;/td&gt;
| 3
        &lt;td&gt;178.30828&lt;br /&gt;
| 178.308
&lt;/td&gt;
| 121.875
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 4
        &lt;td&gt;4&lt;br /&gt;
| 237.744
&lt;/td&gt;
| 162.5
        &lt;td&gt;237.74438&lt;br /&gt;
|-
&lt;/td&gt;
| 5
    &lt;/tr&gt;
| 297.180
    &lt;tr&gt;
| 203.125
        &lt;td&gt;5&lt;br /&gt;
|-
&lt;/td&gt;
| 6
        &lt;td&gt;297.18047&lt;br /&gt;
| 356.617
&lt;/td&gt;
| 243.75
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 7
        &lt;td&gt;6&lt;br /&gt;
| 416.053
&lt;/td&gt;
| 284.375
        &lt;td&gt;356.61656&lt;br /&gt;
|-
&lt;/td&gt;
| 8
    &lt;/tr&gt;
| 475.489
    &lt;tr&gt;
| 325
        &lt;td&gt;7&lt;br /&gt;
|-
&lt;/td&gt;
| 9
        &lt;td&gt;416.05266&lt;br /&gt;
| 534.925
&lt;/td&gt;
| 365.625
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 10
        &lt;td&gt;8&lt;br /&gt;
| 594.361
&lt;/td&gt;
| 406.25
        &lt;td&gt;475.48875&lt;br /&gt;
|-
&lt;/td&gt;
| 11
    &lt;/tr&gt;
| 653.797
    &lt;tr&gt;
| 446.875
        &lt;td&gt;9&lt;br /&gt;
|-
&lt;/td&gt;
| 12
        &lt;td&gt;534.92484&lt;br /&gt;
| 713.233
&lt;/td&gt;
| 487.5
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 13
        &lt;td&gt;10&lt;br /&gt;
| 772.669
&lt;/td&gt;
| 528.125
        &lt;td&gt;594.36094&lt;br /&gt;
|-
&lt;/td&gt;
| 14
    &lt;/tr&gt;
| 832.105
    &lt;tr&gt;
| 568.75
        &lt;td&gt;11&lt;br /&gt;
|-
&lt;/td&gt;
| 15
        &lt;td&gt;653.79703&lt;br /&gt;
| 891.541
&lt;/td&gt;
| 609.375
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 16
        &lt;td&gt;12&lt;br /&gt;
| 950.978
&lt;/td&gt;
| 650
        &lt;td&gt;713.23312&lt;br /&gt;
|-
&lt;/td&gt;
| 17
    &lt;/tr&gt;
| 1010.414
    &lt;tr&gt;
| 690.625
        &lt;td&gt;13&lt;br /&gt;
|-
&lt;/td&gt;
| 18
        &lt;td&gt;772.66922&lt;br /&gt;
| 1069.85
&lt;/td&gt;
| 731.25
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 19
        &lt;td&gt;14&lt;br /&gt;
| 1129.286
&lt;/td&gt;
| 774.875
        &lt;td&gt;832.10531&lt;br /&gt;
|-
&lt;/td&gt;
| 20
    &lt;/tr&gt;
| 1188.722
    &lt;tr&gt;
| 812.5
        &lt;td&gt;15&lt;br /&gt;
|-
&lt;/td&gt;
| 21
        &lt;td&gt;891.54141&lt;br /&gt;
| 1248.158
&lt;/td&gt;
| 853.125.
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 22
        &lt;td&gt;16&lt;br /&gt;
| 1307.594
&lt;/td&gt;
| 893.75
        &lt;td&gt;950.9775&lt;br /&gt;
|-
&lt;/td&gt;
| 23
    &lt;/tr&gt;
| 1367.03
    &lt;tr&gt;
| 934.375
        &lt;td&gt;17&lt;br /&gt;
|-
&lt;/td&gt;
| 24
        &lt;td&gt;1010.41359&lt;br /&gt;
| 1426.466
&lt;/td&gt;
| 975
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 25
        &lt;td&gt;18&lt;br /&gt;
| 1485.902
&lt;/td&gt;
| 1015.625
        &lt;td&gt;1069.84969&lt;br /&gt;
|-
&lt;/td&gt;
| 26
    &lt;/tr&gt;
| 1545.338
    &lt;tr&gt;
| 1056.25
        &lt;td&gt;19&lt;br /&gt;
|-
&lt;/td&gt;
| 27
        &lt;td&gt;1129.28578&lt;br /&gt;
| 1604.775
&lt;/td&gt;
| 1096.875
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 28
        &lt;td&gt;20&lt;br /&gt;
| 1664.211
&lt;/td&gt;
| 1137.5
        &lt;td&gt;1188.72188&lt;br /&gt;
|-
&lt;/td&gt;
| 29
    &lt;/tr&gt;
| 1723.647
    &lt;tr&gt;
| 1178.125
        &lt;td&gt;21&lt;br /&gt;
|-
&lt;/td&gt;
| 30
        &lt;td&gt;1248.15797&lt;br /&gt;
| 1783.083
&lt;/td&gt;
| 1218.75
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 31
        &lt;td&gt;22&lt;br /&gt;
| 1842.519
&lt;/td&gt;
| 1259.375
        &lt;td&gt;1307.59406&lt;br /&gt;
|-
&lt;/td&gt;
| 32
    &lt;/tr&gt;
| 1901.955
    &lt;tr&gt;
| 1300
        &lt;td&gt;23&lt;br /&gt;
|}
&lt;/td&gt;
        &lt;td&gt;1367.03016&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1426.46625&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1485.90234&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1545.33844&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1604.77453&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1664.21063&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1723.64672&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1783.08281&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1842.51891&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1901.955&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
{{todo|expand}}