Edϕ: Difference between revisions
Cmloegcmluin (talk | contribs) Created page with "7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi. If we divide acoustic phi into 7 steps, then 10 of those steps gets us clo..." |
m Removing from Category:Equal-step tuning using Cat-a-lot |
||
(22 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
Various equal divisions of the octave have close approximations of [[acoustic phi]], or <math>φ</math>, ≈833.090296357¢. | |||
If the <math>m^{th}</math> step of <math>n</math><span>ed2 is a close approximation of <math>φ</math>, the <math>n^{th}</math> step of <math>m</math><span>ed<math>φ</math> will be a close approximation of 2. | |||
For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed<math>φ</math> is ≈1190.128995¢. | |||
As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of [[9edϕ|9ed<math>φ</math>]] is ≈1203.35265¢. | |||
Such <math>m</math><span>ed<math>φ</math> are interesting as variants of their respective <math>n</math><span>ed<math>2</math><span>, introducing some combination tone powers. | |||
{| class="wikitable" | |||
|+ | |||
| rowspan="2" |'''scale step''' | |||
| colspan="4" |'''10ed2''' | |||
| colspan="4" |'''7edφ or 10ed(<math>2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015</math>)''' | |||
|- | |||
|'''frequency multiplier (definition)''' | |||
|'''10ed2 frequency multiplier (decimal)''' | |||
|'''pitch (¢)''' | |||
|'''Δ (¢)''' | |||
|'''frequency multiplier (definition)''' | |||
|'''frequency multiplier (decimal)''' | |||
|'''pitch (¢)''' | |||
|'''Δ (¢)''' | |||
|- | |||
|'''1''' | |||
|<math>2^{\frac{1}{10}}</math> | |||
|1.071773463 | |||
|120 | |||
|120 | |||
|<math>φ^{\frac{1}{7}}</math> or <math>≈1.988629015^{\frac{1}{10}}</math> | |||
|1.071162542 | |||
|119.0128995 | |||
|119.0128995 | |||
|- | |||
|'''2''' | |||
|<math>2^{\frac{2}{10}}</math> | |||
|1.148698355 | |||
|240 | |||
|120 | |||
|<math>φ^{\frac{2}{7}}</math> or <math>≈1.988629015^{\frac{2}{10}}</math> | |||
|1.147389191 | |||
|238.025799 | |||
|119.0128995 | |||
|- | |||
|'''3''' | |||
|<math>2^{\frac{3}{10}}</math> | |||
|1.231144413 | |||
|360 | |||
|120 | |||
|<math>φ^{\frac{3}{7}}</math> or <math>≈1.988629015^{\frac{3}{10}}</math> | |||
|1.229040323 | |||
|357.0386984 | |||
|119.0128995 | |||
|- | |||
|'''4''' | |||
|<math>2^{\frac{4}{10}}</math> | |||
|1.319507911 | |||
|480 | |||
|120 | |||
|<math>φ^{\frac{4}{7}}</math> or <math>≈1.988629015^{\frac{4}{10}}</math> | |||
|1.316501956 | |||
|476.0515979 | |||
|119.0128995 | |||
|- | |||
|'''5''' | |||
|<math>2^{\frac{5}{10}}</math> | |||
|1.414213562 | |||
|600 | |||
|120 | |||
|<math>φ^{\frac{5}{7}}</math> or <math>≈1.988629015^{\frac{5}{10}}</math> | |||
|1.410187582 | |||
|595.0644974 | |||
|119.0128995 | |||
|- | |||
|'''6''' | |||
|<math>2^{\frac{6}{10}}</math> | |||
|1.515716567 | |||
|720 | |||
|120 | |||
|<math>φ^{\frac{6}{7}}</math> or <math>≈1.988629015^{\frac{6}{10}}</math> | |||
|1.510540115 | |||
|714.0773969 | |||
|119.0128995 | |||
|- | |||
|'''7''' | |||
|<math>2^{\frac{7}{10}}</math> | |||
|1.624504793 | |||
|840 | |||
|120 | |||
|<math>φ^{\frac{7}{7}}</math> or <math>≈1.988629015^{\frac{7}{10}}</math> | |||
|1.618033989 | |||
|833.0902964 | |||
|119.0128995 | |||
|- | |||
|'''8''' | |||
|<math>2^{\frac{8}{10}}</math> | |||
|1.741101127 | |||
|960 | |||
|120 | |||
|<math>φ^{\frac{8}{7}}</math> or <math>≈1.988629015^{\frac{8}{10}}</math> | |||
|1.7331774 | |||
|952.1031958 | |||
|119.0128995 | |||
|- | |||
|'''9''' | |||
|<math>2^{\frac{9}{10}}</math> | |||
|1.866065983 | |||
|1080 | |||
|120 | |||
|<math>φ^{\frac{9}{7}}</math> or <math>≈1.988629015^{\frac{9}{10}}</math> | |||
|1.85651471 | |||
|1071.116095 | |||
|119.0128995 | |||
|- | |||
|'''10''' | |||
|<math>2^{\frac{10}{10}}</math> | |||
|2 | |||
|1200 | |||
|120 | |||
|<math>φ^{\frac{10}{7}}</math> or <math>≈1.988629015^{\frac{10}{10}}</math> | |||
|1.988629015 | |||
|1190.128995 | |||
|119.0128995 | |||
|} | |||
{| class="wikitable" | |||
|+ | |||
| rowspan="2" |'''scale step''' | |||
| colspan="4" |'''13ed2''' | |||
| colspan="4" |'''9edφ or 13ed(<math>2^{\frac{13log_2{φ}}{9}} ≈ 2.003876886</math>)''' | |||
|- | |||
|'''frequency multiplier (definition)''' | |||
|'''10ed2 frequency multiplier (decimal)''' | |||
|'''pitch (¢)''' | |||
|'''Δ (¢)''' | |||
|'''frequency multiplier (definition)''' | |||
|'''frequency multiplier (decimal)''' | |||
|'''pitch (¢)''' | |||
|'''Δ (¢)''' | |||
|- | |||
|'''1''' | |||
|<math>2^{\frac{1}{13}}</math> | |||
|1.054766076 | |||
|92.30769231 | |||
|92.30769231 | |||
|<math>φ^{\frac{1}{9}}</math> or <math>≈2.003876886^{\frac{1}{13}}</math> | |||
|1.054923213 | |||
|92.56558848 | |||
|92.56558848 | |||
|- | |||
|'''2''' | |||
|<math>2^{\frac{2}{13}}</math> | |||
|1.112531476 | |||
|184.6153846 | |||
|92.30769231 | |||
|<math>φ^{\frac{2}{9}}</math> or <math>≈2.003876886^{\frac{2}{13}}</math> | |||
|1.112862986 | |||
|185.131177 | |||
|92.56558848 | |||
|- | |||
|'''3''' | |||
|<math>2^{\frac{3}{13}}</math> | |||
|1.17346046 | |||
|276.9230769 | |||
|92.30769231 | |||
|<math>φ^{\frac{3}{9}}</math> or <math>≈2.003876886^{\frac{3}{13}}</math> | |||
|1.173984997 | |||
|277.6967655 | |||
|92.56558848 | |||
|- | |||
|'''4''' | |||
|<math>2^{\frac{4}{13}}</math> | |||
|1.237726285 | |||
|369.2307692 | |||
|92.30769231 | |||
|<math>φ^{\frac{4}{9}}</math> or <math>≈2.003876886^{\frac{4}{13}}</math> | |||
|1.238464025 | |||
|370.2623539 | |||
|92.56558848 | |||
|- | |||
|'''5''' | |||
|<math>2^{\frac{5}{13}}</math> | |||
|1.305511698 | |||
|461.5384615 | |||
|92.30769231 | |||
|<math>φ^{\frac{5}{9}}</math> or <math>≈2.003876886^{\frac{5}{13}}</math> | |||
|1.306484449 | |||
|462.8279424 | |||
|92.56558848 | |||
|- | |||
|'''6''' | |||
|<math>2^{\frac{6}{13}}</math> | |||
|1.377009451 | |||
|553.8461538 | |||
|92.30769231 | |||
|<math>φ^{\frac{6}{9}}</math> or <math>≈2.003876886^{\frac{6}{13}}</math> | |||
|1.378240772 | |||
|555.3935309 | |||
|92.56558848 | |||
|- | |||
|'''7''' | |||
|<math>2^{\frac{7}{13}}</math> | |||
|1.452422856 | |||
|646.1538462 | |||
|92.30769231 | |||
|<math>φ^{\frac{7}{9}}</math> or <math>≈2.003876886^{\frac{7}{13}}</math> | |||
|1.453938184 | |||
|647.9591194 | |||
|92.56558848 | |||
|- | |||
|'''8''' | |||
|<math>2^{\frac{8}{13}}</math> | |||
|1.531966357 | |||
|738.4615385 | |||
|92.30769231 | |||
|<math>φ^{\frac{8}{9}}</math> or <math>≈2.003876886^{\frac{8}{13}}</math> | |||
|1.533793141 | |||
|740.5247079 | |||
|92.56558848 | |||
|- | |||
|'''9''' | |||
|<math>2^{\frac{9}{13}}</math> | |||
|1.615866144 | |||
|830.7692308 | |||
|92.30769231 | |||
|<math>φ^{\frac{9}{9}}</math> or <math>≈2.003876886^{\frac{9}{13}}</math> | |||
|1.618033989 | |||
|833.0902964 | |||
|92.56558848 | |||
|- | |||
|'''10''' | |||
|<math>2^{\frac{10}{13}}</math> | |||
|1.704360793 | |||
|923.0769231 | |||
|92.30769231 | |||
|<math>φ^{\frac{10}{9}}</math> or <math>≈2.003876886^{\frac{10}{13}}</math> | |||
|1.706901614 | |||
|925.6558848 | |||
|92.56558848 | |||
|- | |||
|11 | |||
|<math>2^{\frac{11}{13}}</math> | |||
|1.797701946 | |||
|1015.384615 | |||
|92.30769231 | |||
|<math>φ^{\frac{11}{9}}</math> or <math>≈2.003876886^{\frac{11}{13}}</math> | |||
|1.800650136 | |||
|1018.221473 | |||
|92.56558848 | |||
|- | |||
|12 | |||
|<math>2^{\frac{12}{13}}</math> | |||
|1.896155029 | |||
|1107.692308 | |||
|92.30769231 | |||
|<math>φ^{\frac{12}{9}}</math> or <math>≈2.003876886^{\frac{12}{13}}</math> | |||
|1.899547627 | |||
|1110.787062 | |||
|92.56558848 | |||
|- | |||
|13 | |||
|<math>2^{\frac{13}{13}}</math> | |||
|2 | |||
|1200 | |||
|92.30769231 | |||
|<math>φ^{\frac{13}{9}}</math> or <math>≈2.003876886^{\frac{13}{13}}</math> | |||
|2.003876886 | |||
|1203.35265 | |||
|92.56558848 | |||
|} | |||
A couple such scales can be found in the [[Scala Scale Archive|Huygens-Fokker Foundation's Scala scale archive]]. They were described by Walter O'Connell in his 1993 paper [http://anaphoria.com/oconnell.pdf The Tonality of the Golden Section]. The 18th root of φ scale doubles the resolution of the 9th root scale featured above, as so as the 9th root of φ scale is similar to 13ed2 the 18th root of φ scale is similar to 26edo (which does a notably better job of approximating 3-, 5-, and 7- limit harmonies). | |||
cet33.scl 25 25th root of phi, Walter O´Connell (1993) | |||
cet46.scl 18 18th root of phi, Walter O´Connell (1993) | |||
== See also == | |||
* [[EDe]] | |||
* [[Acoustic pi]] | |||
* [[User:Eliora/Phi to the phi]] | |||
[[Category:Golden ratio]] | |||
{{todo|inline=1|improve synopsis|improve readability}} |