33ed4: Difference between revisions

Wikispaces>jauernig
**Imported revision 536806944 - Original comment: **
Fredg999 category edits (talk | contribs)
m Removing from Category:Ed4 using Cat-a-lot
 
(16 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
'''33ed4''' is the [[ed4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of '''<span style="color: #080;">Equivocal Tuning</span>'''.
: This revision was by author [[User:jauernig|jauernig]] and made on <tt>2015-01-09 18:48:39 UTC</tt>.<br>
: The original revision id was <tt>536806944</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**33ed4** is the [[ED4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[xenharmonic/cent|cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of equivocal tuning.


It has a [[9_5|9/5]] which is 0.6 cents sharp, a [[7_5|7/5]] which is 0.7 cents flat, and a [[9_7|9/7]] which is 1.3 cents sharp. Therefore it is closely related to [[13edt]], the [[Bohlen-Pierce]] scale, although it has no pure [[3_1|3/1]], which is 11.1 cents flat.
It has a [[9/5]] which is 0.6{{c}} sharp, a [[7/5]] which is 0.7{{c}} flat, and a [[9/7]] which is 1.3{{c}} sharp. Therefore it is closely related to [[13edt]], the [[Bohlen–Pierce scale]], although it has no pure [[3/1]], which is 11.1 cents flat. The lack of a [[3/2|pure fifth]] makes it also interesting.


Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1 cent).
Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1{{c}}).


**Intervals**
== Intervals ==
|| degree || cents || nearest JI
{| class="wikitable right-all mw-collapsible"
interval || in cents || difference
|+ style="font-size: 105%;" | Intervals of 33ed4
in cents ||
|-
|| 1 || 72,7 || 24/23 || 73,7 || -1,0 ||
! Degree
|| 2 || 145,5 || 25/23 || 144,4 || 1,1 ||
! Cents
|| 3 || 218,2 || 17/15 || 216,6 || 1,6 ||
! Nearest JI<br />interval
|| 4 || 290,9 || 13/11 || 289,2 || 1,7 ||
! Cents
|| 5 || 363,6 || 16/13 || 359,5 || 4,1 ||
! Difference<br />in cents
|| 6 || 436,4 || **9/7** || 435,1 || 1,3 ||
|-
|| 7 || 509,1 || 51/38 || 509,4 || -0,3 ||
| 1
|| 8 || 581,8 || **7/5** || 582,5 || -0,7 ||
| 72.7
|| 9 || 654,5 || 19/13 || 657,0 || -2,5 ||
| 24/23
|| 10 || 727,3 || 35/23 || 726,9 || 0,4 ||
| 73.7
|| 11 || 800,0 || 27/17 || 800,9 || -0,9 ||
| −1.0
|| 12 || 872,7 || 53/32 || 873,5 || -0,8 ||
|-
|| 13 || 945,5 || 19/11 || 946,2 || -0,7 ||
| 2
|| 14 || 1018,2 || **9/5** || 1017,6 || 0,6 ||
| 145.5
|| 15 || 1090,9 || 15/8 || 1088,3 || 2,6 ||
| 25/23
|| 16 || 1163,6 || 45/23 || 1161,9 || 1,7 ||
| 144.4
|| 17 || 1236,4 || 49/24 || 1235,7 || 0,7 ||
| 1.1
|| 18 || 1309,1 || 32/15 || 1311,7 || -2,6 ||
|-
|| 19 || 1381,8 || 20/9 || 1382,4 || -0,6 ||
| 3
|| 20 || 1454,5 || 44/19 || 1453,8 || 0,7 ||
| 218.2
|| 21 || 1527,3 || 29/12 || 1527,6 || -0,3 ||
| 17/15
|| 22 || 1600,0 || 68/27 || 1599,1 || 0,9 ||
| 216.6
|| 23 || 1672,7 || 21/8 || 1670,8 || 1,9 ||
| 1.6
|| 24 || 1745,5 || 52/19 || 1743,0 || 2,5 ||
|-
|| 25 || 1818,2 || **20/7** || 1817,5 || 0,7 ||
| 4
|| 26 || 1890,9 || 116/39 || 1887,1 || 3,8 ||
| 290.9
|| 27 || 1963,6 || 28/9 || 1964,9 || -1,3 ||
| 13/11
|| 28 || 2036,4 || 13/4 || 2040,5 || -4,1 ||
| 289.2
|| 29 || 2109,1 || 44/13 || 2110,8 || -1,7 ||
| 1.7
|| 30 || 2181,8 || 60/17 || 2183,3 || -1,5 ||
|-
|| 31 || 2254,5 || 114/31 || 2254,4 || 0,1 ||
| 5
|| 32 || 2327,3 || 23/6 || 2326,3 || 1,0 ||
| 363.6
|| 33 || 2400,0 || 4/1 || 2400,0 || 0,0 ||
| 16/13
| 359.5
| 4.1
|- style="font-weight: bold"
| 6
| 436.4
| 9/7
| 435.1
| 1.3
|-
| 7
| 509.1
| 51/38
| 509.4
| −0.3
|- style="font-weight: bold"
| 8
| 581.8
| 7/5
| 582.5
| −0.7
|-
| 9
| 654.5
| 19/13
| 657.0
| −2.5
|-
| 10
| 727.3
| 35/23
| 726.9
| 0.4
|-
| 11
| 800.0
| 27/17
| 800.9
| −0.9
|-
| 12
| 872.7
| 53/32
| 873.5
| −0.8
|-
| 13
| 945.5
| 19/11
| 946.2
| −0.7
|- style="font-weight: bold"
| 14
| 1018.2
| 9/5
| 1017.6
| 0.6
|-
| 15
| 1090.9
| 15/8
| 1088.3
| 2.6
|- style="font-weight: bold; color: #080"
| 16
| 1163.6
| 45/23
| 1161.9
| 1.7
|- style="font-weight: bold; color: #080"
| 17
| 1236.4
| 49/24
| 1235.7
| 0.7
|-
| 18
| 1309.1
| 32/15
| 1311.7
| −2.6
|- style="font-weight: bold"
| 19
| 1381.8
| 20/9
| 1382.4
| −0.6
|-
| 20
| 1454.5
| 44/19
| 1453.8
| 0.7
|-
| 21
| 1527.3
| 29/12
| 1527.6
| −0.3
|-
| 22
| 1600.0
| 68/27
| 1599.1
| 0.9
|-
| 23
| 1672.7
| 21/8
| 1670.8
| 1.9
|-
| 24
| 1745.5
| 52/19
| 1743.0
| 2.5
|- style="font-weight: bold"
| 25
| 1818.2
| 20/7
| 1817.5
| 0.7
|-
| 26
| 1890.9
| 116/39
| 1887.1
| 3.8
|- style="font-weight: bold"
| 27
| 1963.6
| 28/9
| 1964.9
| −1.3
|-
| 28
| 2036.4
| 13/4
| 2040.5
| −4.1
|-
| 29
| 2109.1
| 44/13
| 2110.8
| −1.7
|-
| 30
| 2181.8
| 60/17
| 2183.3
| −1.5
|-
| 31
| 2254.5
| 114/31
| 2254.4
| 0.1
|-
| 32
| 2327.3
| 23/6
| 2326.3
| 1.0
|- style="font-weight: bold"
| 33
| 2400.0
| 4/1
| 2400.0
| 0.0
|}


**Music**
== Harmonics ==
{{Harmonics in equal
| steps = 33
| num = 4
| denom = 1
}}
{{Harmonics in equal
| steps = 33
| num = 4
| denom = 1
| start = 12
| collapsed = 1
}}


[[http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4|Equivocal Tuning]] by Ahornberg</pre></div>
== Music ==
<h4>Original HTML content:</h4>
* [http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4 Equivocal Tuning] — Set of compositions by Ahornberg
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33ed4&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;33ed4&lt;/strong&gt; is the &lt;a class="wiki_link" href="/ED4"&gt;Equal Divisions of the Double Octave&lt;/a&gt; into 33 narrow chromatic semitones each of 72.727 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. It takes out every second step of &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt; and falls between &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt; and &lt;a class="wiki_link" href="/17edo"&gt;17edo&lt;/a&gt;. So even degree 16 or degree 17 can play the role of the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt;, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of equivocal tuning.&lt;br /&gt;
&lt;br /&gt;
It has a &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt; which is 0.6 cents sharp, a &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; which is 0.7 cents flat, and a &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; which is 1.3 cents sharp. Therefore it is closely related to &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;, the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale, although it has no pure &lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;, which is 11.1 cents flat.&lt;br /&gt;
&lt;br /&gt;
Furthermore it has some &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; and even &lt;a class="wiki_link" href="/23-limit"&gt;23-limit&lt;/a&gt; which are very close (most of them under or nearby 1 cent).&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Intervals&lt;/strong&gt;&lt;br /&gt;


 
[[Category:Equal-step tuning]]
&lt;table class="wiki_table"&gt;
{{todo|expand}}
    &lt;tr&gt;
        &lt;td&gt;degree&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nearest JI&lt;br /&gt;
interval&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;in cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;difference&lt;br /&gt;
in cents&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;73,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;145,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;144,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;290,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;289,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;363,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;359,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;436,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;9/7&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;435,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;509,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;51/38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;509,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;581,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;7/5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;582,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;654,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;657,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;727,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;726,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;872,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;53/32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;873,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;945,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;946,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1018,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;9/5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1017,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1088,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1163,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1161,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1236,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;49/24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1235,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1309,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1311,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1381,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1382,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1454,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1453,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1527,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1527,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1600,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;68/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1599,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1672,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1670,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1745,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1743,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1818,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;20/7&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1817,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1890,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116/39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1887,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3,8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1963,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1964,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2036,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2040,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-4,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2109,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2110,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2181,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;60/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2183,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2254,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;114/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2254,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2327,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2326,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2400,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2400,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;strong&gt;Music&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4" rel="nofollow"&gt;Equivocal Tuning&lt;/a&gt; by Ahornberg&lt;/body&gt;&lt;/html&gt;</pre></div>