612edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
m →Theory: Fix missing word |
||
(42 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
The 612 | == Theory == | ||
[[ | 612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. As an equal temperament, it [[tempering out|tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]]. | ||
[[Category: | |||
[[Category: | The 612edo step has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]]. | ||
[[Category: | |||
=== Prime harmonics === | |||
{{Harmonics in equal|612}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }} | |||
| {{Mapping| 612 970 1421 }} | |||
| +0.0044 | |||
| 0.0089 | |||
| 0.46 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }} | |||
| {{Mapping| 612 970 1421 1718 }} | |||
| +0.0210 | |||
| 0.0297 | |||
| 1.52 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }} | |||
| {{Mapping| 612 970 1421 1718 2117 }} | |||
| +0.0363 | |||
| 0.0406 | |||
| 2.07 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374 | |||
| {{Mapping| 612 970 1421 1718 2117 2265 }} | |||
| +0.0010 | |||
| 0.0871 | |||
| 4.44 | |||
|- | |||
| 2.3.5.7.11.13.19 | |||
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095 | |||
| {{Mapping| 612 970 1421 1718 2117 2265 2600 }} | |||
| −0.0168 | |||
| 0.0917 | |||
| 4.68 | |||
|} | |||
* 612et has a lower relative error than any previous equal temperaments in the 5-limit. Not until [[1171edo|1171]] do we find a better equal temperament in terms of either absolute error or relative error. | |||
* It also has a lower absolute error in the 7- and 11-limit than any previous equal temperaments, and is only bettered by [[935edo|935]] and [[836edo|836]], respectively. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 113\612 | |||
| 221.57 | |||
| 8388608/7381125 | |||
| [[Fortune]] | |||
|- | |||
| 1 | |||
| 127\612 | |||
| 249.02 | |||
| {{monzo| -26 18 -1 }} | |||
| [[Monzismic]] | |||
|- | |||
| 2 | |||
| 83\612 | |||
| 162.75 | |||
| 1125/1024 | |||
| [[Crazy]] | |||
|- | |||
| 4 | |||
| 194\612<br>(41\612) | |||
| 380.39<br>(80.39) | |||
| 81/65<br>(22/21) | |||
| [[Quasithird]] | |||
|- | |||
| 9 | |||
| 133\612<br>(25\612) | |||
| 315.69<br>(49.02) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] | |||
|- | |||
| 12 | |||
| 124\612<br>(22\612) | |||
| 243.137<br>(43.14) | |||
| 3145728/2734375<br>(?) | |||
| [[Magnesium]] | |||
|- | |||
| 12 | |||
| 254\612<br>(1\612) | |||
| 498.04<br>(1.96) | |||
| 4/3<br>(32805/32768) | |||
| [[Atomic]] | |||
|- | |||
| 17 | |||
| 127\612<br>(17\612) | |||
| 249.02<br>(33.33) | |||
| {{monzo| -23 5 9 -2 }}<br>(100352/98415) | |||
| [[Chlorine]] | |||
|- | |||
| 18 | |||
| 127\612<br>(9\612) | |||
| 249.02<br>(17.65) | |||
| 231/200<br>(99/98) | |||
| [[Hemiennealimmal]] (11-limit) | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=_DrkrgkiaAY ''Theme and Variations in Hemiennealimmal''] (2023) | |||
== Notes == | |||
<references /> | |||
[[Category:Ennealimmal]] | |||
[[Category:Hemiennealimmal]] | |||
[[Category:Listen]] |