|
|
(20 intermediate revisions by 11 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-30 15:56:09 UTC</tt>.<br>
| |
| : The original revision id was <tt>602918480</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=43 EDT=
| |
|
| |
|
| This tuning is related to [[27edo]] having compressed octaves of 1194.251 cents, a small but significant deviation. This is particularly relevant because 27edo is a "sharp tending" system, and flattening its octaves has been suggested before as an improvement (I think by no less than Ivor Darreg, but I'll have to check that).
| | == Theory == |
| | 43edt is related to [[27edo]], but with the 3/1 rather than the 2/1 being just. Like 27edo, it is consistent to the [[9-odd-limit|10-integer-limit]]. It has octaves compressed by about 5.7492{{c}}, a small but significant deviation. This is particularly relevant because the harmonics 27edo approximates well—3, 5, 7, and 13—are all tuned sharp, so 43edt improves those approximations. |
|
| |
|
| However, in addition to its rich octave-based harmony, the 43edt is also a fine tritave-based tuning: with a 7/3 of 1460 cents and such a near perfect 5/3, Bohlen-Pierce harmony is very clear and hearty, as well as capable of extended enharmonic distinctions that [[13edt]] is not. The 4L+5s MOS has L=7 s=3. | | However, in addition to its rich octave-based harmony, the 43edt is also a fine tritave-based tuning: with a 7/3 of 1460 cents and such a near perfect 5/3, [[Bohlen–Pierce]] harmony is very clear and hearty, as well as capable of extended enharmonic distinctions that [[13edt]] is not. The {{mos scalesig|4L 5s<3/1>|link=1}} [[mos]] has {{nowrap|L {{=}} 7|s {{=}} 3}}. |
|
| |
|
| ||~ Degrees ||~ Cents || | | === Harmonics === |
| || 1 || 44.2315 ||
| | {{Harmonics in equal|43|3|1}} |
| || 2 || 88.463 ||
| | {{Harmonics in equal|43|3|1|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 43edt (continued)}} |
| || 3 || 132.6945 || | |
| || 4 || 176.926 ||
| |
| || 5 || 221.158 ||
| |
| || 6 || 265.389 ||
| |
| || 7 || 309.621 ||
| |
| || 8 || 353.852 ||
| |
| || 9 || 398.084 ||
| |
| || 10 || 442.315 ||
| |
| || 11 || 486.547 ||
| |
| || 12 || 530.778 ||
| |
| || 13 || 575.01 ||
| |
| || 14 || 619.241 ||
| |
| || 15 || 663.473 ||
| |
| || 16 || 707.704 ||
| |
| || 17 || 751.936 ||
| |
| || 18 || 796.167 ||
| |
| || 19 || 840.399 ||
| |
| || 20 || 884.63 ||
| |
| || 21 || 928.862 ||
| |
| || 22 || 973.093 ||
| |
| || 23 || 1017.325 ||
| |
| || 24 || 1061.556 ||
| |
| || 25 || 1105.788 ||
| |
| || 26 || 1150.019 ||
| |
| || 27 || 1194.251 ||
| |
| || 28 || 1238.482 ||
| |
| || 29 || 1282.713 ||
| |
| || 30 || 1326.946 ||
| |
| || 31 || 1371.177 ||
| |
| || 32 || 1415.408 ||
| |
| || 33 || 1459.64 ||
| |
| || 34 || 1503.871 ||
| |
| || 35 || 1548.193 ||
| |
| || 36 || 1592.334 ||
| |
| || 37 || 1636.566 ||
| |
| || 38 || 1680.797 ||
| |
| || 39 || 1725.029 ||
| |
| || 40 || 1769.2605 ||
| |
| || 41 || 1813.492 ||
| |
| || 42 || 1857.7235 ||
| |
| || 43 || 1901.955 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>43edt</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x43 EDT"></a><!-- ws:end:WikiTextHeadingRule:0 -->43 EDT</h1>
| |
| <br />
| |
| This tuning is related to <a class="wiki_link" href="/27edo">27edo</a> having compressed octaves of 1194.251 cents, a small but significant deviation. This is particularly relevant because 27edo is a &quot;sharp tending&quot; system, and flattening its octaves has been suggested before as an improvement (I think by no less than Ivor Darreg, but I'll have to check that).<br />
| |
| <br />
| |
| However, in addition to its rich octave-based harmony, the 43edt is also a fine tritave-based tuning: with a 7/3 of 1460 cents and such a near perfect 5/3, Bohlen-Pierce harmony is very clear and hearty, as well as capable of extended enharmonic distinctions that <a class="wiki_link" href="/13edt">13edt</a> is not. The 4L+5s MOS has L=7 s=3.<br />
| |
| <br />
| |
|
| |
|
| | === Subsets and supersets === |
| | 43edt is the 14th [[prime equal division|prime edt]], following [[41edt]] and coming before [[47edt]]. |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| | {| class="wikitable center-1 right-2 right-3" |
| <th>Degrees<br />
| | |- |
| </th>
| | ! # |
| <th>Cents<br />
| | ! Cents |
| </th>
| | ! [[Hekt]]s |
| </tr>
| | ! Approximate ratios |
| <tr>
| | |- |
| <td>1<br />
| | | 1 |
| </td>
| | | 44.2 |
| <td>44.2315<br />
| | | 30.2 |
| </td>
| | | 39/38, 40/39 |
| </tr>
| | |- |
| <tr>
| | | 2 |
| <td>2<br />
| | | 88.5 |
| </td>
| | | 60.5 |
| <td>88.463<br />
| | | [[20/19]] |
| </td>
| | |- |
| </tr>
| | | 3 |
| <tr>
| | | 132.7 |
| <td>3<br />
| | | 90.7 |
| </td>
| | | [[27/25]] |
| <td>132.6945<br />
| | |- |
| </td>
| | | 4 |
| </tr>
| | | 176.9 |
| <tr>
| | | 120.9 |
| <td>4<br />
| | | [[10/9]] |
| </td>
| | |- |
| <td>176.926<br />
| | | 5 |
| </td>
| | | 221.2 |
| </tr>
| | | 151.2 |
| <tr>
| | | [[25/22]] |
| <td>5<br />
| | |- |
| </td>
| | | 6 |
| <td>221.158<br />
| | | 265.4 |
| </td>
| | | 181.4 |
| </tr>
| | | [[7/6]] |
| <tr>
| | |- |
| <td>6<br />
| | | 7 |
| </td>
| | | 309.6 |
| <td>265.389<br />
| | | 211.6 |
| </td>
| | | [[6/5]] |
| </tr>
| | |- |
| <tr>
| | | 8 |
| <td>7<br />
| | | 353.9 |
| </td>
| | | 241.9 |
| <td>309.621<br />
| | | [[27/22]] |
| </td>
| | |- |
| </tr>
| | | 9 |
| <tr>
| | | 398.1 |
| <td>8<br />
| | | 272.1 |
| </td>
| | | [[24/19]] |
| <td>353.852<br />
| | |- |
| </td>
| | | 10 |
| </tr>
| | | 442.3 |
| <tr>
| | | 302.3 |
| <td>9<br />
| | | [[9/7]] |
| </td>
| | |- |
| <td>398.084<br />
| | | 11 |
| </td>
| | | 486.5 |
| </tr>
| | | 332.6 |
| <tr>
| | | [[45/34]] |
| <td>10<br />
| | |- |
| </td>
| | | 12 |
| <td>442.315<br />
| | | 530.8 |
| </td>
| | | 362.8 |
| </tr>
| | | [[34/25]] |
| <tr>
| | |- |
| <td>11<br />
| | | 13 |
| </td>
| | | 575.0 |
| <td>486.547<br />
| | | 393.0 |
| </td>
| | | [[39/28]] |
| </tr>
| | |- |
| <tr>
| | | 14 |
| <td>12<br />
| | | 619.2 |
| </td>
| | | 423.3 |
| <td>530.778<br />
| | | [[10/7]] |
| </td>
| | |- |
| </tr>
| | | 15 |
| <tr>
| | | 663.5 |
| <td>13<br />
| | | 453.5 |
| </td>
| | | [[22/15]] |
| <td>575.01<br />
| | |- |
| </td>
| | | 16 |
| </tr>
| | | 707.7 |
| <tr>
| | | 483.7 |
| <td>14<br />
| | | [[3/2]] |
| </td>
| | |- |
| <td>619.241<br />
| | | 17 |
| </td>
| | | 751.9 |
| </tr>
| | | 514.0 |
| <tr>
| | | [[20/13]], 105/68 |
| <td>15<br />
| | |- |
| </td>
| | | 18 |
| <td>663.473<br />
| | | 796.2 |
| </td>
| | | 544.2 |
| </tr>
| | | [[19/12]] |
| <tr>
| | |- |
| <td>16<br />
| | | 19 |
| </td>
| | | 840.4 |
| <td>707.704<br />
| | | 574.4 |
| </td>
| | | [[13/8]] |
| </tr>
| | |- |
| <tr>
| | | 20 |
| <td>17<br />
| | | 884.6 |
| </td>
| | | 604.7 |
| <td>751.936<br />
| | | [[5/3]] |
| </td>
| | |- |
| </tr>
| | | 21 |
| <tr>
| | | 928.9 |
| <td>18<br />
| | | 634.9 |
| </td>
| | | [[12/7]] |
| <td>796.167<br />
| | |- |
| </td>
| | | 22 |
| </tr>
| | | 973.1 |
| <tr>
| | | 665.1 |
| <td>19<br />
| | | [[7/4]] |
| </td>
| | |- |
| <td>840.399<br />
| | | 23 |
| </td>
| | | 1017.3 |
| </tr>
| | | 695.3 |
| <tr>
| | | [[9/5]] |
| <td>20<br />
| | |- |
| </td>
| | | 24 |
| <td>884.63<br />
| | | 1061.6 |
| </td>
| | | 725.6 |
| </tr>
| | | [[24/13]] |
| <tr>
| | |- |
| <td>21<br />
| | | 25 |
| </td>
| | | 1105.8 |
| <td>928.862<br />
| | | 755.8 |
| </td>
| | | [[36/19]] |
| </tr>
| | |- |
| <tr>
| | | 26 |
| <td>22<br />
| | | 1150.0 |
| </td>
| | | 786.0 |
| <td>973.093<br />
| | | [[39/20]], [[68/35]] |
| </td>
| | |- |
| </tr>
| | | 27 |
| <tr>
| | | 1194.3 |
| <td>23<br />
| | | 816.3 |
| </td>
| | | [[2/1]] |
| <td>1017.325<br />
| | |- |
| </td>
| | | 28 |
| </tr>
| | | 1238.5 |
| <tr>
| | | 846.5 |
| <td>24<br />
| | | [[45/22]] |
| </td>
| | |- |
| <td>1061.556<br />
| | | 29 |
| </td>
| | | 1282.7 |
| </tr>
| | | 876.7 |
| <tr>
| | | [[21/10]] |
| <td>25<br />
| | |- |
| </td>
| | | 30 |
| <td>1105.788<br />
| | | 1326.9 |
| </td>
| | | 907.0 |
| </tr>
| | | [[28/13]] |
| <tr>
| | |- |
| <td>26<br />
| | | 31 |
| </td>
| | | 1371.2 |
| <td>1150.019<br />
| | | 937.2 |
| </td>
| | | 75/34 |
| </tr>
| | |- |
| <tr>
| | | 32 |
| <td>27<br />
| | | 1415.4 |
| </td>
| | | 967.4 |
| <td>1194.251<br />
| | | [[34/15]] |
| </td>
| | |- |
| </tr>
| | | 33 |
| <tr>
| | | 1459.6 |
| <td>28<br />
| | | 997.7 |
| </td>
| | | [[7/3]] |
| <td>1238.482<br />
| | |- |
| </td>
| | | 34 |
| </tr>
| | | 1503.9 |
| <tr>
| | | 1027.9 |
| <td>29<br />
| | | [[19/8]] |
| </td>
| | |- |
| <td>1282.713<br />
| | | 35 |
| </td>
| | | 1548.1 |
| </tr>
| | | 1058.1 |
| <tr>
| | | [[22/9]] |
| <td>30<br />
| | |- |
| </td>
| | | 36 |
| <td>1326.946<br />
| | | 1592.3 |
| </td>
| | | 1088.3 |
| </tr>
| | | [[5/2]] |
| <tr>
| | |- |
| <td>31<br />
| | | 37 |
| </td>
| | | 1636.6 |
| <td>1371.177<br />
| | | 1118.6 |
| </td>
| | | [[18/7]] |
| </tr>
| | |- |
| <tr>
| | | 38 |
| <td>32<br />
| | | 1680.8 |
| </td>
| | | 1148.8 |
| <td>1415.408<br />
| | | [[66/25]] |
| </td>
| | |- |
| </tr>
| | | 39 |
| <tr>
| | | 1725.0 |
| <td>33<br />
| | | 1179.1 |
| </td>
| | | [[27/10]] |
| <td>1459.64<br />
| | |- |
| </td>
| | | 40 |
| </tr>
| | | 1769.3 |
| <tr>
| | | 1209.3 |
| <td>34<br />
| | | [[25/9]] |
| </td>
| | |- |
| <td>1503.871<br />
| | | 41 |
| </td>
| | | 1813.5 |
| </tr>
| | | 1239.5 |
| <tr>
| | | 57/20 |
| <td>35<br />
| | |- |
| </td>
| | | 42 |
| <td>1548.193<br />
| | | 1857.7 |
| </td>
| | | 1269.8 |
| </tr>
| | | [[38/13]], 117/40 |
| <tr>
| | |- |
| <td>36<br />
| | | 43 |
| </td>
| | | 1902.0 |
| <td>1592.334<br />
| | | 1300.0 |
| </td>
| | | [[3/1]] |
| </tr>
| | |} |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>1636.566<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>1680.797<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>1725.029<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>1769.2605<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>1813.492<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>1857.7235<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>1901.955<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | == Related regular temperaments == |
| | 43edt tempers out the no-twos comma of {{monzo| 0 63 -43 }}, leading to the regular temperament [[support]]ed by [[27edo|27-]], [[190edo|190-]], and [[217edo]]. |
| | |
| | === 27 & 190 temperament === |
| | ==== 5-limit ==== |
| | Subgroup: 2.3.5 |
| | |
| | Comma list: {{monzo| 0 63 -43 }} |
| | |
| | Mapping: {{mapping| 1 0 0 | 0 43 63 }} |
| | |
| | Optimal tuning (POTE): ~{{monzo| 0 -41 28 }} = 44.2294 |
| | |
| | {{Optimal ET sequence|legend=0| 27, 190, 217, 407, 597, 624, 841 }} |
| | |
| | ==== 7-limit ==== |
| | Subgroup: 2.3.5.7 |
| | |
| | Comma list: 4375/4374, 40353607/40000000 |
| | |
| | Mapping: {{mapping| 1 0 0 1 | 0 43 63 49 }} |
| | |
| | Optimal tuning (POTE): ~1029/1000 = 44.2288 |
| | |
| | {{Optimal ET sequence|legend=0| 27, 190, 217 }} |
| | |
| | Badness: 0.1659 |
| | |
| | === 217 & 407 temperament === |
| | ==== 7-limit ==== |
| | Subgroup: 2.3.5.7 |
| | |
| | Comma list: 134217728/133984375, 512557306947/512000000000 |
| | |
| | Mapping: {{mapping| 1 0 0 9 | 0 43 63 -168 }} |
| | |
| | Optimal tuning (POTE): ~525/512 = 44.2320 |
| | |
| | {{Optimal ET sequence|legend=0| 217, 407, 624, 841, 1058, 1465 }} |
| | |
| | Badness: 0.3544 |
| | |
| | ==== 11-limit ==== |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 46656/46585, 131072/130977, 234375/234256 |
| | |
| | Mapping: {{mapping| 1 0 0 9 -1 | 0 43 63 -168 121 }} |
| | |
| | Optimal tuning (POTE): ~525/512 = 44.2312 |
| | |
| | {{Optimal ET sequence|legend=0| 217, 407, 624 }} |
| | |
| | Badness: 0.1129 |
| | |
| | ==== 13-limit ==== |
| | Subgroup: 2.3.5.7.11.13 |
| | |
| | Comma list: 2080/2079, 4096/4095, 39366/39325, 109512/109375 |
| | |
| | Mapping: {{mapping| 1 0 0 9 -1 3 | 0 43 63 -168 121 19 }} |
| | |
| | Optimal tuning (POTE): ~40/39 = 44.2312 |
| | |
| | {{Optimal ET sequence|legend=0| 217, 407, 624 }} |
| | |
| | Badness: 0.0503 |
| | |
| | == See also == |
| | * [[16edf]] – relative edf |
| | * [[27edo]] – relative edo |
| | * [[70ed6]] – relative ed6 |
| | * [[90ed10]] – relative ed10 |
| | * [[97ed12]] – relative ed12 |
| | |
| | [[Category:27edo]] |