43edt: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
{{ED intro}} | {{ED intro}} | ||
== Theory == | |||
43edt is related to [[27edo]], but with the 3/1 rather than the 2/1 being just. Like 27edo, it is consistent to the [[9-odd-limit|10-integer-limit]]. It has octaves compressed by about 5.7492{{c}}, a small but significant deviation. This is particularly relevant because the harmonics 27edo approximates well—3, 5, 7, and 13—are all tuned sharp, so 43edt improves those approximations. | |||
However, in addition to its rich octave-based harmony, the 43edt is also a fine tritave-based tuning: with a 7/3 of 1460 cents and such a near perfect 5/3, [[Bohlen–Pierce]] harmony is very clear and hearty, as well as capable of extended enharmonic distinctions that [[13edt]] is not. The {{mos scalesig|4L 5s<3/1>|link=1}} [[mos]] has {{nowrap|L {{=}} 7|s {{=}} 3}}. | |||
=== Harmonics === | |||
{{Harmonics in equal|43|3|1}} | |||
{{Harmonics in equal|43|3|1|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 43edt (continued)}} | |||
== | === Subsets and supersets === | ||
43edt is the 14th [[prime equal division|prime edt]], following [[41edt]] and coming before [[47edt]]. | |||
| | |||
== Intervals == | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-1 right-2 right-3" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! [[Hekt]]s | ! [[Hekt]]s | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 1 | | 1 | ||
| 44. | | 44.2 | ||
| 30. | | 30.2 | ||
| 40/39 | | 39/38, 40/39 | ||
|- | |- | ||
| 2 | | 2 | ||
| 88. | | 88.5 | ||
| 60. | | 60.5 | ||
| [[20/19]] | | [[20/19]] | ||
|- | |- | ||
| 3 | | 3 | ||
| 132. | | 132.7 | ||
| 90. | | 90.7 | ||
| [[27/25]] | | [[27/25]] | ||
|- | |- | ||
| 4 | | 4 | ||
| 176. | | 176.9 | ||
| 120. | | 120.9 | ||
| [[10/9]] | | [[10/9]] | ||
|- | |- | ||
| 5 | | 5 | ||
| 221. | | 221.2 | ||
| 151. | | 151.2 | ||
| [[25/22]] | | [[25/22]] | ||
|- | |- | ||
| 6 | | 6 | ||
| 265. | | 265.4 | ||
| 181. | | 181.4 | ||
| | | [[7/6]] | ||
|- | |- | ||
| 7 | | 7 | ||
| 309. | | 309.6 | ||
| 211. | | 211.6 | ||
| [[6/5]] | | [[6/5]] | ||
|- | |- | ||
| 8 | | 8 | ||
| 353. | | 353.9 | ||
| 241. | | 241.9 | ||
| [[27/22]] | | [[27/22]] | ||
|- | |- | ||
| 9 | | 9 | ||
| 398. | | 398.1 | ||
| 272. | | 272.1 | ||
| 24/19 | | [[24/19]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 442. | | 442.3 | ||
| 302. | | 302.3 | ||
| 9/7 | | [[9/7]] | ||
|- | |- | ||
| 11 | | 11 | ||
| 486. | | 486.5 | ||
| 332. | | 332.6 | ||
| | | [[45/34]] | ||
|- | |- | ||
| 12 | | 12 | ||
| 530. | | 530.8 | ||
| 362. | | 362.8 | ||
| | | [[34/25]] | ||
|- | |- | ||
| 13 | | 13 | ||
| 575. | | 575.0 | ||
| 393. | | 393.0 | ||
| | | [[39/28]] | ||
|- | |- | ||
| 14 | | 14 | ||
| 619. | | 619.2 | ||
| 423. | | 423.3 | ||
| [[10/7]] | | [[10/7]] | ||
|- | |- | ||
| 15 | | 15 | ||
| 663. | | 663.5 | ||
| 453. | | 453.5 | ||
| [[22/15]] | | [[22/15]] | ||
|- | |- | ||
| 16 | | 16 | ||
| 707. | | 707.7 | ||
| 483. | | 483.7 | ||
| [[3/2]] | | [[3/2]] | ||
|- | |- | ||
| 17 | | 17 | ||
| 751. | | 751.9 | ||
| | | 514.0 | ||
| | | [[20/13]], 105/68 | ||
|- | |- | ||
| 18 | | 18 | ||
| 796. | | 796.2 | ||
| 544. | | 544.2 | ||
| [[19/12]] | | [[19/12]] | ||
|- | |- | ||
| 19 | | 19 | ||
| 840. | | 840.4 | ||
| 574. | | 574.4 | ||
| [[13/8]] | | [[13/8]] | ||
|- | |- | ||
| 20 | | 20 | ||
| 884. | | 884.6 | ||
| 604. | | 604.7 | ||
| [[5/3]] | | [[5/3]] | ||
|- | |- | ||
| 21 | | 21 | ||
| 928. | | 928.9 | ||
| 634. | | 634.9 | ||
| [[12/7]] | | [[12/7]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 973. | | 973.1 | ||
| 665. | | 665.1 | ||
| 7/4 | | [[7/4]] | ||
|- | |- | ||
| 23 | | 23 | ||
| 1017. | | 1017.3 | ||
| 695. | | 695.3 | ||
| [[9/5]] | | [[9/5]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 1061. | | 1061.6 | ||
| 725. | | 725.6 | ||
| [[24/13]] | | [[24/13]] | ||
|- | |- | ||
| 25 | | 25 | ||
| 1105. | | 1105.8 | ||
| 755. | | 755.8 | ||
| [[36/19]] | | [[36/19]] | ||
|- | |- | ||
| 26 | | 26 | ||
| 1150. | | 1150.0 | ||
| 786. | | 786.0 | ||
| 68/35 | | [[39/20]], [[68/35]] | ||
|- | |- | ||
| 27 | | 27 | ||
| 1194. | | 1194.3 | ||
| 816. | | 816.3 | ||
| [[2/1]] | | [[2/1]] | ||
|- | |- | ||
| 28 | | 28 | ||
| 1238. | | 1238.5 | ||
| 846. | | 846.5 | ||
| [[ | | [[45/22]] | ||
|- | |- | ||
| 29 | | 29 | ||
| 1282. | | 1282.7 | ||
| 876. | | 876.7 | ||
| | | [[21/10]] | ||
|- | |- | ||
| 30 | | 30 | ||
| 1326. | | 1326.9 | ||
| | | 907.0 | ||
| | | [[28/13]] | ||
|- | |- | ||
| 31 | | 31 | ||
| 1371. | | 1371.2 | ||
| 937. | | 937.2 | ||
| | | 75/34 | ||
|- | |- | ||
| 32 | | 32 | ||
| 1415. | | 1415.4 | ||
| 967. | | 967.4 | ||
| | | [[34/15]] | ||
|- | |- | ||
| 33 | | 33 | ||
| 1459. | | 1459.6 | ||
| 997. | | 997.7 | ||
| 7/3 | | [[7/3]] | ||
|- | |- | ||
| 34 | | 34 | ||
| 1503. | | 1503.9 | ||
| 1027. | | 1027.9 | ||
| 19/8 | | [[19/8]] | ||
|- | |- | ||
| 35 | | 35 | ||
| 1548. | | 1548.1 | ||
| 1058. | | 1058.1 | ||
| [[ | | [[22/9]] | ||
|- | |- | ||
| 36 | | 36 | ||
| 1592. | | 1592.3 | ||
| 1088. | | 1088.3 | ||
| 5/2 | | [[5/2]] | ||
|- | |- | ||
| 37 | | 37 | ||
| 1636. | | 1636.6 | ||
| 1118. | | 1118.6 | ||
| | | [[18/7]] | ||
|- | |- | ||
| 38 | | 38 | ||
| 1680. | | 1680.8 | ||
| 1148. | | 1148.8 | ||
| [[ | | [[66/25]] | ||
|- | |- | ||
| 39 | | 39 | ||
| 1725. | | 1725.0 | ||
| 1179. | | 1179.1 | ||
| 27/10 | | [[27/10]] | ||
|- | |- | ||
| 40 | | 40 | ||
| 1769. | | 1769.3 | ||
| 1209. | | 1209.3 | ||
| [[ | | [[25/9]] | ||
|- | |- | ||
| 41 | | 41 | ||
| 1813. | | 1813.5 | ||
| 1239. | | 1239.5 | ||
| 57/20 | | 57/20 | ||
|- | |- | ||
| 42 | | 42 | ||
| 1857. | | 1857.7 | ||
| 1269. | | 1269.8 | ||
| | | [[38/13]], 117/40 | ||
|- | |- | ||
| 43 | | 43 | ||
| | | 1902.0 | ||
| 1300 | | 1300.0 | ||
| | | [[3/1]] | ||
|} | |} | ||
= | == Related regular temperaments == | ||
43edt tempers out the no-twos comma of {{monzo| 0 63 -43 }}, leading to the regular temperament [[support]]ed by [[27edo|27-]], [[190edo|190-]], and [[217edo]]. | |||
== | === 27 & 190 temperament === | ||
=== 5-limit === | ==== 5-limit ==== | ||
Subgroup: 2.3.5 | |||
Comma list: {{monzo| 0 63 -43 }} | |||
Mapping: | Mapping: {{mapping| 1 0 0 | 0 43 63 }} | ||
Optimal tuning (POTE): ~{{monzo| 0 -41 28 }} = 44.2294 | |||
= | {{Optimal ET sequence|legend=0| 27, 190, 217, 407, 597, 624, 841 }} | ||
==== 7-limit ==== | |||
Subgroup: 2.3.5.7 | |||
Comma list: 4375/4374, 40353607/40000000 | |||
Mapping: {{mapping| 1 0 0 1 | 0 43 63 49 }} | |||
Optimal tuning (POTE): ~1029/1000 = 44.2288 | |||
{{Optimal ET sequence|legend=0| 27, 190, 217 }} | |||
Badness: 0.1659 | Badness: 0.1659 | ||
== | === 217 & 407 temperament === | ||
=== 7-limit === | ==== 7-limit ==== | ||
Subgroup: 2.3.5.7 | |||
Comma list: 134217728/133984375, 512557306947/512000000000 | |||
Mapping: {{mapping| 1 0 0 9 | 0 43 63 -168 }} | |||
Optimal tuning (POTE): ~525/512 = 44.2320 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624, 841, 1058, 1465 }} | |||
Badness: 0.3544 | Badness: 0.3544 | ||
=== 11-limit === | ==== 11-limit ==== | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 46656/46585, 131072/130977, 234375/234256 | |||
Mapping: {{mapping| 1 0 0 9 -1 | 0 43 63 -168 121 }} | |||
Optimal tuning (POTE): ~525/512 = 44.2312 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624 }} | |||
Badness: 0.1129 | Badness: 0.1129 | ||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2080/2079, 4096/4095, 39366/39325, 109512/109375 | |||
Mapping: | Mapping: {{mapping| 1 0 0 9 -1 3 | 0 43 63 -168 121 19 }} | ||
Optimal tuning (POTE): ~40/39 = 44.2312 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624 }} | |||
Badness: 0.0503 | Badness: 0.0503 | ||
[[ | == See also == | ||
[[Category: | * [[16edf]] – relative edf | ||
* [[27edo]] – relative edo | |||
* [[70ed6]] – relative ed6 | |||
* [[90ed10]] – relative ed10 | |||
* [[97ed12]] – relative ed12 | |||
[[Category:27edo]] |