43edt: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
{{ED intro}} | {{ED intro}} | ||
== Theory == | |||
43edt is related to [[27edo]], but with the 3/1 rather than the 2/1 being just. Like 27edo, it is consistent to the [[9-odd-limit|10-integer-limit]]. It has octaves compressed by about 5.7492{{c}}, a small but significant deviation. This is particularly relevant because the harmonics 27edo approximates well—3, 5, 7, and 13—are all tuned sharp, so 43edt improves those approximations. | |||
However, in addition to its rich octave-based harmony, the 43edt is also a fine tritave-based tuning: with a 7/3 of 1460 cents and such a near perfect 5/3, [[Bohlen–Pierce]] harmony is very clear and hearty, as well as capable of extended enharmonic distinctions that [[13edt]] is not. The {{mos scalesig|4L 5s<3/1>|link=1}} [[mos]] has {{nowrap|L {{=}} 7|s {{=}} 3}}. | |||
=== Harmonics === | |||
{{Harmonics in equal|43|3|1}} | |||
{{Harmonics in equal|43|3|1|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 43edt (continued)}} | |||
== | === Subsets and supersets === | ||
43edt is the 14th [[prime equal division|prime edt]], following [[41edt]] and coming before [[47edt]]. | |||
| | |||
== Intervals == | == Intervals == | ||
{ | {| class="wikitable center-1 right-2 right-3" | ||
|- | |||
! # | |||
! Cents | |||
! [[Hekt]]s | |||
! Approximate ratios | |||
|- | |||
| 1 | |||
| 44.2 | |||
| 30.2 | |||
| 39/38, 40/39 | |||
|- | |||
| 2 | |||
| 88.5 | |||
| 60.5 | |||
| [[20/19]] | |||
|- | |||
| 3 | |||
| 132.7 | |||
| 90.7 | |||
| [[27/25]] | |||
|- | |||
| 4 | |||
| 176.9 | |||
| 120.9 | |||
| [[10/9]] | |||
|- | |||
| 5 | |||
| 221.2 | |||
| 151.2 | |||
| [[25/22]] | |||
|- | |||
| 6 | |||
| 265.4 | |||
| 181.4 | |||
| [[7/6]] | |||
|- | |||
| 7 | |||
| 309.6 | |||
| 211.6 | |||
| [[6/5]] | |||
|- | |||
| 8 | |||
| 353.9 | |||
| 241.9 | |||
| [[27/22]] | |||
|- | |||
| 9 | |||
| 398.1 | |||
| 272.1 | |||
| [[24/19]] | |||
|- | |||
| 10 | |||
| 442.3 | |||
| 302.3 | |||
| [[9/7]] | |||
|- | |||
| 11 | |||
| 486.5 | |||
| 332.6 | |||
| [[45/34]] | |||
|- | |||
| 12 | |||
| 530.8 | |||
| 362.8 | |||
| [[34/25]] | |||
|- | |||
| 13 | |||
| 575.0 | |||
| 393.0 | |||
| [[39/28]] | |||
|- | |||
| 14 | |||
| 619.2 | |||
| 423.3 | |||
| [[10/7]] | |||
|- | |||
| 15 | |||
| 663.5 | |||
| 453.5 | |||
| [[22/15]] | |||
|- | |||
| 16 | |||
| 707.7 | |||
| 483.7 | |||
| [[3/2]] | |||
|- | |||
| 17 | |||
| 751.9 | |||
| 514.0 | |||
| [[20/13]], 105/68 | |||
|- | |||
| 18 | |||
| 796.2 | |||
| 544.2 | |||
| [[19/12]] | |||
|- | |||
| 19 | |||
| 840.4 | |||
| 574.4 | |||
| [[13/8]] | |||
|- | |||
| 20 | |||
| 884.6 | |||
| 604.7 | |||
| [[5/3]] | |||
|- | |||
| 21 | |||
| 928.9 | |||
| 634.9 | |||
| [[12/7]] | |||
|- | |||
| 22 | |||
| 973.1 | |||
| 665.1 | |||
| [[7/4]] | |||
|- | |||
| 23 | |||
| 1017.3 | |||
| 695.3 | |||
| [[9/5]] | |||
|- | |||
| 24 | |||
| 1061.6 | |||
| 725.6 | |||
| [[24/13]] | |||
|- | |||
| 25 | |||
| 1105.8 | |||
| 755.8 | |||
| [[36/19]] | |||
|- | |||
| 26 | |||
| 1150.0 | |||
| 786.0 | |||
| [[39/20]], [[68/35]] | |||
|- | |||
| 27 | |||
| 1194.3 | |||
| 816.3 | |||
| [[2/1]] | |||
|- | |||
| 28 | |||
| 1238.5 | |||
| 846.5 | |||
| [[45/22]] | |||
|- | |||
| 29 | |||
| 1282.7 | |||
| 876.7 | |||
| [[21/10]] | |||
|- | |||
| 30 | |||
| 1326.9 | |||
| 907.0 | |||
| [[28/13]] | |||
|- | |||
| 31 | |||
| 1371.2 | |||
| 937.2 | |||
| 75/34 | |||
|- | |||
| 32 | |||
| 1415.4 | |||
| 967.4 | |||
| [[34/15]] | |||
|- | |||
| 33 | |||
| 1459.6 | |||
| 997.7 | |||
| [[7/3]] | |||
|- | |||
| 34 | |||
| 1503.9 | |||
| 1027.9 | |||
| [[19/8]] | |||
|- | |||
| 35 | |||
| 1548.1 | |||
| 1058.1 | |||
| [[22/9]] | |||
|- | |||
| 36 | |||
| 1592.3 | |||
| 1088.3 | |||
| [[5/2]] | |||
|- | |||
| 37 | |||
| 1636.6 | |||
| 1118.6 | |||
| [[18/7]] | |||
|- | |||
| 38 | |||
| 1680.8 | |||
| 1148.8 | |||
| [[66/25]] | |||
|- | |||
| 39 | |||
| 1725.0 | |||
| 1179.1 | |||
| [[27/10]] | |||
|- | |||
| 40 | |||
| 1769.3 | |||
| 1209.3 | |||
| [[25/9]] | |||
|- | |||
| 41 | |||
| 1813.5 | |||
| 1239.5 | |||
| 57/20 | |||
|- | |||
| 42 | |||
| 1857.7 | |||
| 1269.8 | |||
| [[38/13]], 117/40 | |||
|- | |||
| 43 | |||
| 1902.0 | |||
| 1300.0 | |||
| [[3/1]] | |||
|} | |||
= | == Related regular temperaments == | ||
43edt tempers out the no-twos comma of {{monzo| 0 63 -43 }}, leading to the regular temperament [[support]]ed by [[27edo|27-]], [[190edo|190-]], and [[217edo]]. | |||
== | === 27 & 190 temperament === | ||
=== 5-limit === | ==== 5-limit ==== | ||
Subgroup: 2.3.5 | |||
Comma list: {{monzo| 0 63 -43 }} | |||
Mapping: | Mapping: {{mapping| 1 0 0 | 0 43 63 }} | ||
Optimal tuning (POTE): ~{{monzo| 0 -41 28 }} = 44.2294 | |||
= | {{Optimal ET sequence|legend=0| 27, 190, 217, 407, 597, 624, 841 }} | ||
==== 7-limit ==== | |||
Subgroup: 2.3.5.7 | |||
Comma list: 4375/4374, 40353607/40000000 | |||
Mapping: {{mapping| 1 0 0 1 | 0 43 63 49 }} | |||
Optimal tuning (POTE): ~1029/1000 = 44.2288 | |||
{{Optimal ET sequence|legend=0| 27, 190, 217 }} | |||
Badness: 0.1659 | Badness: 0.1659 | ||
== | === 217 & 407 temperament === | ||
=== 7-limit === | ==== 7-limit ==== | ||
Subgroup: 2.3.5.7 | |||
Comma list: 134217728/133984375, 512557306947/512000000000 | |||
Mapping: {{mapping| 1 0 0 9 | 0 43 63 -168 }} | |||
Optimal tuning (POTE): ~525/512 = 44.2320 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624, 841, 1058, 1465 }} | |||
Badness: 0.3544 | Badness: 0.3544 | ||
=== 11-limit === | ==== 11-limit ==== | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 46656/46585, 131072/130977, 234375/234256 | |||
Mapping: {{mapping| 1 0 0 9 -1 | 0 43 63 -168 121 }} | |||
Optimal tuning (POTE): ~525/512 = 44.2312 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624 }} | |||
Badness: 0.1129 | Badness: 0.1129 | ||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2080/2079, 4096/4095, 39366/39325, 109512/109375 | |||
Mapping: | Mapping: {{mapping| 1 0 0 9 -1 3 | 0 43 63 -168 121 19 }} | ||
Optimal tuning (POTE): ~40/39 = 44.2312 | |||
{{Optimal ET sequence|legend=0| 217, 407, 624 }} | |||
Badness: 0.0503 | Badness: 0.0503 | ||
[[ | == See also == | ||
[[Category: | * [[16edf]] – relative edf | ||
* [[27edo]] – relative edo | |||
* [[70ed6]] – relative ed6 | |||
* [[90ed10]] – relative ed10 | |||
* [[97ed12]] – relative ed12 | |||
[[Category:27edo]] |