1848edo: Difference between revisions
m Categories |
Tristanbay (talk | contribs) →Subsets and supersets: mentioned 3696edo Tags: Mobile edit Mobile web edit |
||
(48 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | == Theory == | ||
1848edo is an extremely strong 11-limit division, having the lowest 11-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until [[6079edo|6079]]. | |||
In the 5-limit it tempers out the minortone comma, {{monzo| -16 35 -17 }} and [[Kirnberger's atom]], {{monzo| 161 -84 -12 }} and thus tunes the [[atomic]] temperament, for which it also provides the [[optimal patent val]] in the 11-limit. In the 7-limit it tempers out the [[landscape comma]], 250047/250000, so it supports [[domain]] and [[akjayland]]. In the 11-limit it tempers out [[9801/9800]], 151263/151250, [[1771561/1771470]], 3294225/3294172, and the [[spoob]]. | |||
It is distinctly [[consistent]] through the [[15-odd-limit]] (though just barely), and tempers out the 13-limit commas [[4225/4224]] and [[6656/6655]]. Higher-limit prime harmonics represented by 1848edo with less than 10% error are 37, 61, and 83, of which 61 is accurate to 0.002 edosteps (and is inherited from [[231edo]]). The harmonics represented by less than 20% error are 19, 47, 59, 67, 89, and the 2.3.5.7.11.19 subgroup is the simplest and most natural choice for using 1848edo with higher limits. In the 2.3.5.7.11.19, it tempers out [[5776/5775]]. | |||
1848edo is unique in that it consistently tunes both [[81/80]] and [[64/63]] to an integer fraction of the octave, [[56edo|1\56]] and [[44edo|1\44]] respectively. As a corollary, it supports [[barium]] and [[ruthenium]] temperaments, which have periods 56 and 44 respectively. While every edo that is a multiple of 616 shares the property of directly mapping 81/80 and 64/63 to fractions of the octave, 1848edo is unique due to its strength in simple harmonics and it actually shows how 81/80 and 64/63 are produced. In 2.3.5.7.11.19, it also tempers [[96/95]] to [[66edo|1\66]], thus making it a valuable system where important raising or lowering commas are represented by intervals that fit evenly within the octave. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|1848}} | {{Harmonics in equal|1848|columns=11}} | ||
=== Subsets and supersets === | |||
Since 1848 factors into {{factorization|1848}}, 1848edo has subset edos {{EDOs| 2, 3, 4, 6, 7, 8, 11, 12, 14, 21, 22, 24, 28, 33, 42, 44, 56, 66, 77, 84, 88, 132, 154, 168, 231, 264, 308, 462, 616, 924 }}. | |||
[[3696edo]], which divides the edostep into two, and [[5544edo]], which divides the edostep into three, provide decent corrections for the 13- and the 17-limit. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! rowspan="2" | [[Subgroup]] | ||
![[TE simple badness|Relative]] (%) | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -2929 1848 }} | |||
| {{mapping| 1848 2929 }} | |||
| 0.002192 | |||
| 0.002192 | |||
| 0.34 | |||
|- | |- | ||
|2.3 | | 2.3.5 | ||
|{{ | | {{monzo| -16 35 -17 }}, {{monzo| 129 -14 -46 }} | ||
| | | {{mapping| 1848 2929 4291 }} | ||
| | | −0.005705 | ||
|0. | | 0.011311 | ||
| | | 1.74 | ||
|- | |- | ||
|2.3.5 | | 2.3.5.7 | ||
|{{ | | 250047/250000, {{monzo| -4 17 1 -9 }}, {{monzo| 43 -1 -13 -4 }} | ||
| | | {{mapping| 1848 2929 4291 5188 }} | ||
| | | −0.004748 | ||
|0. | | 0.009935 | ||
|1. | | 1.53 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7.11 | ||
| | | 9801/9800, 151263/151250, 1771561/1771470, 67110351/67108864 | ||
| | | {{mapping| 1848 2929 4291 5188 6393 }} | ||
| | | −0.002686 | ||
|0. | | 0.009797 | ||
|1. | | 1.51 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11.13 | ||
|9801/9800, 250047/250000, | | 4225/4224, 6656/6655, 9801/9800, 151263/151250, 1771561/1771470 | ||
| | | {{mapping| 1848 2929 4291 5188 6393 6838 }} | ||
| | | +0.009828 | ||
|0. | | 0.029378 | ||
| | | 4.52 | ||
|- style="border-top: double;" | |||
| 2.3.5.7.11.19 | |||
| 5776/5775, 9801/9800, 10241/10240, 250047/250000, 233744896/233735625 | |||
| {{mapping| 1848 2929 4291 5188 6393 7850 }} | |||
| +0.002094 | |||
| 0.013936 | |||
| 2.15 | |||
|} | |} | ||
[[ | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 281\1848 | |||
| 182.467 | |||
| 10/9 | |||
| [[Minortone]] | |||
|- | |||
| 1 | |||
| 523\1848 | |||
| 339.610 | |||
| {{monzo|36 -24 1}} | |||
| [[Empress]] | |||
|- | |||
| 3 | |||
| 281\1848 | |||
| 182.467 | |||
| 10/9 | |||
| [[Minortonic_family#Domain|Domain]] | |||
|- | |||
| 12 | |||
| 767\1848<br />(3\1848) | |||
| 498.052<br />(1.948) | |||
| 4/3<br />(32805/32768) | |||
| [[Atomic]] | |||
|- | |||
| 21 | |||
| 901\1848<br />(21\1848) | |||
| 585.065<br />(13.636) | |||
| 91875/65536<br />(126/125) | |||
| [[Akjayland]] | |||
|- | |||
| 22 | |||
| 767\1848<br />(11\1848) | |||
| 498.052<br />(7.143) | |||
| 4/3<br />({{monzo|16 -13 2}}) | |||
| [[Major arcana]] | |||
|- | |||
| 44 | |||
| 767\1848<br />(11\1848) | |||
| 498.052<br />(7.143) | |||
| 4/3<br />(18375/18304) | |||
| [[Ruthenium]] | |||
|- | |||
| 56 | |||
| 767\1848<br />(8\1848) | |||
| 498.052<br />(5.195) | |||
| 4/3<br />(126/125) | |||
| [[Barium]] | |||
|- | |||
| 77 | |||
| 581\1848<br />(42\1848) | |||
| 377.273<br />(27.273) | |||
| 975/784<br />(?) | |||
| [[Iridium]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=pDCBMziEPko ''Nocturne for Strings in Major Arcana and Minortone''] (2023) | |||
* [https://www.youtube.com/watch?v=A-xeNdcudEY ''Frolicking in Spoob''] (2024) | |||
[[Category:Akjayland]] | |||
[[Category:Atomic]] | |||
[[Category:Listen]] |