540edo: Difference between revisions

Contribution (talk | contribs)
ArrowHead294 (talk | contribs)
mNo edit summary
 
(32 intermediate revisions by 7 users not shown)
Line 1: Line 1:
= Theory =
{{Infobox ET}}
'''540 tone equal temperament''', also called '''540-EDO''' divides the octave in 540 equal steps. Since 540 = 2 * 270 and 540 = 45 * 12, it contains [[270edo]] and [[12edo]] as subsets, both belonging to [[The Riemann Zeta Function and Tuning#Zeta EDO lists|the ''zeta peak edos'', ''zeta integral edos'' and ''zeta gap edos'' sequences]].
{{ED intro}}


= Divisors =
== Theory ==
The prime factorization of 540 is
Since {{nowrap|540 {{=}} 2 × 270}} and {{nowrap|540 {{=}} 45 × 12}}, 540edo contains [[270edo]] and [[12edo]] as subsets, both being important [[zeta edo]]s. It is [[enfactoring|enfactored]] in the 13-limit, with the same tuning as 270edo, but it makes for a reasonable 17-, 19- and 23-limit system, and beyond. It is, however, no longer [[consistent]] in the [[15-odd-limit]], all because of [[15/13]] being 1.14 cents sharp of just.
<math>540 = 2^{2} \cdot 3^{3} \cdot 5</math>


Its divisors are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540.
The equal temperament [[tempering out|tempers out]] [[1156/1155]] and [[2601/2600]] in the 17-limit; [[1216/1215]], [[1331/1330]], [[1445/1444]] and [[1729/1728]] in the 19-limit; [[1105/1104]] and [[1496/1495]] in the 23-limit. Although it does quite well in these limits, it is not as ''efficient'' as 270edo's original mappings, as it has greater relative errors (→ [[#Regular temperament properties]]). It is therefore a question of whether one thinks these tuning improvements and differently supplied [[essentially tempered chord]]s are worth the load of all the extra notes.  


= Intervals =
The approximated [[29/1|29]] and [[31/1|31]] are relatively weak, but [[37/1|37]], [[41/1|41]] and [[43/1|43]] are quite spot on, with the 43 coming from 270edo. For this reason, we may consider it as a full [[43-limit]] system. For all the primes starting with 29, it removes the distinction of otonal and utonal [[superparticular ratio|superparticular]] pairs (e.g. 29/28 vs 30/29 for prime 29) by tempering out the corresponding [[square superparticular]]s, which is responsible for its slightly flat-tending tuning profile. Prime [[47/1|47]] does not have that privilege and falls practically halfway between, though the sharp mapping might be preferred to keep [[47/46]] wider than [[48/47]]. As a compensation, you do get a spot-on prime [[53/1|53]] for free.  
{| class="wikitable"
 
|+
=== Prime harmonics ===
!Size (steps)
{{Harmonics in equal|540|columns=12}}
!Size (cents)
{{Harmonics in equal|540|columns=12|start=13|collapsed=true|title=Approximation of prime harmonics in 540edo (continued)}}
!Just (ratio)
 
!Just (cents)
=== Subsets and supersets ===
!Error (cents)
540 is a very composite number. The [[prime factorization]] of 540 is {{factorization|540}}. Its nontrivial divisors are {{EDOs| 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, and 270 }}.
!Comments
 
|-
A step of 540edo is known as a '''dexl''', proposed by [[Joseph Monzo]] in April 2023 as an [[interval size measure]]<ref>[http://tonalsoft.com/enc/d/dexl.aspx Tonalsoft Encyclopedia | Dexl / 540edo]</ref>.
|0
 
| 0.000
== Approximation to JI ==
|
{{Q-odd-limit intervals|540|23}}
|
 
|
== Regular temperament properties ==
|
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
|1
! rowspan="2" | [[Comma list|Comma List]]
|  2.222
! rowspan="2" | [[Mapping]]
|
! rowspan="2" | Optimal<br>8ve Stretch (¢)
|
! colspan="2" | Tuning Error
|
|
|-
|2
|  4.444
|
|
|
|
|-
|3
|  6.667
|
|
|
|
|-
|4
|  8.889
|
|
|
|
|-
|5
| 11.111
|
|
|
|
|-
|6
| 13.333
|
|
|
|
|-
|7
| 15.556
|
|
|
|
|-
|8
| 17.778
|
|
|
|
|-
|9
| 20.000
|
|
|
|
|-
|10
| 22.222
|
|
|
|
|-
|11
| 24.444
|
|
|
|
|-
|12
| 26.667
|
|
|
|
|-
|13
| 28.889
|
|
|
|
|-
|14
| 31.111
|
|
|
|
|-
|15
| 33.333
|
|
|
|
|-
|16
| 35.556
|
|
|
|
|-
|17
| 37.778
|
|
|
|
|-
|18
| 40.000
|
|
|
|
|-
|19
| 42.222
|
|
|
|
|-
|20
| 44.444
|
|
|
|
|-
|21
| 46.667
|
|
|
|
|-
|22
| 48.889
|
|
|
|
|-
|23
| 51.111
|
|
|
|
|-
|24
| 53.333
|
|
|
|
|-
|25
| 55.556
|
|
|
|
|-
|26
| 57.778
|
|
|
|
|-
|27
| 60.000
|
|
|
|
|-
|28
| 62.222
|
|
|
|
|-
|29
| 64.444
|
|
|
|
|-
|30
| 66.667
|
|
|
|
|-
|31
| 68.889
|
|
|
|
|-
|32
| 71.111
|
|
|
|
|-
|33
| 73.333
|
|
|
|
|-
|34
| 75.556
|
|
|
|
|-
|35
| 77.778
|
|
|
|
|-
|36
| 80.000
|
|
|
|
|-
|37
| 82.222
|
|
|
|
|-
|38
| 84.444
|
|
|
|
|-
|39
| 86.667
|
|
|
|
|-
|40
| 88.889
|
|
|
|
|-
|41
| 91.111
|
|
|
|
|-
|42
| 93.333
|
|
|
|
|-
|43
| 95.556
|
|
|
|
|-
|44
| 97.778
|
|
|
|
|-
|45
|100.000
|
|
|
|
|-
|46
|102.222
|
|
|
|
|-
|47
|104.444
|
|
|
|
|-
|48
|106.667
|
|
|
|
|-
|49
|108.889
|
|
|
|
|-
|50
|111.111
|
|
|
|
|-
|51
|113.333
|
|
|
|
|-
|52
|115.556
|
|
|
|
|-
|53
|117.778
|
|
|
|
|-
|54
|120.000
|
|
|
|
|-
|55
|122.222
|
|
|
|
|-
|56
|124.444
|
|
|
|
|-
|57
|126.667
|
|
|
|
|-
|58
|128.889
|
|
|
|
|-
|59
|131.111
|
|
|
|
|-
|60
|133.333
|
|
|
|
|-
|61
|135.556
|
|
|
|
|-
|62
|137.778
|
|
|
|
|-
|63
|140.000
|
|
|
|
|-
|64
|142.222
|
|
|
|
|-
|65
|144.444
|
|
|
|
|-
|66
|146.667
|
|
|
|
|-
|67
|148.889
|
|
|
|
|-
|68
|151.111
|
|
|
|
|-
|69
|153.333
|
|
|
|
|-
|70
|155.556
|
|
|
|
|-
|71
|157.778
|
|
|
|
|-
|72
|160.000
|
|
|
|
|-
|73
|162.222
|
|
|
|
|-
|74
|164.444
|
|
|
|
|-
|75
|166.667
|
|
|
|
|-
|76
|168.889
|
|
|
|
|-
|77
|171.111
|
|
|
|
|-
|78
|173.333
|
|
|
|
|-
|79
|175.556
|
|
|
|
|-
|80
|177.778
|
|
|
|
|-
|81
|180.000
|
|
|
|
|-
|82
|182.222
|
|
|
|
|-
|83
|184.444
|
|
|
|
|-
|84
|186.667
|
|
|
|
|-
|85
|188.889
|
|
|
|
|-
|86
|191.111
|
|
|
|
|-
|87
|193.333
|
|
|
|
|-
|88
|195.556
|
|
|
|
|-
|89
|197.778
|
|
|
|
|-
|90
|200.000
|
|
|
|
|-
|91
|202.222
|
|
|
|
|-
|92
|204.444
|
|
|
|
|-
|93
|206.667
|
|
|
|
|-
|94
|208.889
|
|
|
|
|-
|95
|211.111
|
|
|
|
|-
|96
|213.333
|
|
|
|
|-
|97
|215.556
|
|
|
|
|-
|98
|217.778
|
|
|
|
|-
|99
|220.000
|
|
|
|
|-
|100
|222.222
|
|
|
|
|-
|101
|224.444
|
|
|
|
|-
|102
|226.667
|
|
|
|
|-
|103
|228.889
|
|
|
|
|-
|104
|231.111
|
|
|
|
|-
|105
|233.333
|
|
|
|
|-
|106
|235.556
|
|
|
|
|-
|107
|237.778
|
|
|
|
|-
|108
|240.000
|
|
|
|
|-
|109
|242.222
|
|
|
|
|-
|110
|244.444
|
|
|
|
|-
|111
|246.667
|
|
|
|
|-
|112
|248.889
|
|
|
|
|-
|113
|251.111
|
|
|
|
|-
|114
|253.333
|
|
|
|
|-
|115
|255.556
|
|
|
|
|-
|116
|257.778
|
|
|
|
|-
|117
|260.000
|
|
|
|
|-
|118
|262.222
|
|
|
|
|-
|119
|264.444
|
|
|
|
|-
|120
|266.667
|
|
|
|
|-
|121
|268.889
|
|
|
|
|-
|122
|271.111
|
|
|
|
|-
|123
|273.333
|
|
|
|
|-
|124
|275.556
|
|
|
|
|-
|125
|277.778
|
|
|
|
|-
|126
|280.000
|
|
|
|
|-
|127
|282.222
|
|
|
|
|-
|128
|284.444
|
|
|
|
|-
|129
|286.667
|
|
|
|
|-
|130
|288.889
|
|
|
|
|-
|131
|291.111
|
|
|
|
|-
|132
|293.333
|
|
|
|
|-
|133
|295.556
|
|
|
|
|-
|134
|297.778
|
|
|
|
|-
|135
|300.000
|
|
|
|
|-
|136
|302.222
|
|
|
|
|-
|137
|304.444
|
|
|
|
|-
|138
|306.667
|
|
|
|
|-
|139
|308.889
|
|
|
|
|-
|140
|311.111
|
|
|
|
|-
|141
|313.333
|
|
|
|
|-
|142
|315.556
|
|
|
|
|-
|143
|317.778
|
|
|
|
|-
|144
|320.000
|
|
|
|
|-
|145
|322.222
|
|
|
|
|-
|146
|324.444
|
|
|
|
|-
|147
|326.667
|
|
|
|
|-
|148
|328.889
|
|
|
|
|-
|149
|331.111
|
|
|
|
|-
|150
|333.333
|
|
|
|
|-
|151
|335.556
|
|
|
|
|-
|152
|337.778
|
|
|
|
|-
|153
|340.000
|
|
|
|
|-
|154
|342.222
|
|
|
|
|-
|155
|344.444
|
|
|
|
|-
|156
|346.667
|
|
|
|
|-
|157
|348.889
|
|
|
|
|-
|158
|351.111
|
|
|
|
|-
|159
|353.333
|
|
|
|
|-
|160
|355.556
|
|
|
|
|-
|161
|357.778
|
|
|
|
|-
|162
|360.000
|
|
|
|
|-
|163
|362.222
|
|
|
|
|-
|164
|364.444
|
|
|
|
|-
|165
|366.667
|
|
|
|
|-
|166
|368.889
|
|
|
|
|-
|167
|371.111
|
|
|
|
|-
|168
|373.333
|
|
|
|
|-
|169
|375.556
|
|
|
|
|-
|170
|377.778
|
|
|
|
|-
|171
|380.000
|
|
|
|
|-
|172
|382.222
|
|
|
|
|-
|173
|384.444
|
|
|
|
|-
|174
|386.667
|
|
|
|
|-
|175
|388.889
|
|
|
|
|-
|176
|391.111
|
|
|
|
|-
|177
|393.333
|
|
|
|
|-
|178
|395.556
|
|
|
|
|-
|179
|397.778
|
|
|
|
|-
|180
|400.000
|
|
|
|
|-
|181
|402.222
|
|
|
|
|-
|182
|404.444
|
|
|
|
|-
|183
|406.667
|
|
|
|
|-
|184
|408.889
|
|
|
|
|-
|185
|411.111
|
|
|
|
|-
|186
|413.333
|
|
|
|
|-
|187
|415.556
|
|
|
|
|-
|188
|417.778
|
|
|
|
|-
|189
|420.000
|
|
|
|
|-
|190
|422.222
|
|
|
|
|-
|191
|424.444
|
|
|
|
|-
|192
|426.667
|
|
|
|
|-
|193
|428.889
|
|
|
|
|-
|194
|431.111
|
|
|
|
|-
|195
|433.333
|
|
|
|
|-
|196
|435.556
|
|
|
|
|-
|197
|437.778
|
|
|
|
|-
|198
|440.000
|
|
|
|
|-
|199
|442.222
|
|
|
|
|-
|200
|444.444
|
|
|
|
|-
|201
|446.667
|
|
|
|
|-
|202
|448.889
|
|
|
|
|-
|203
|451.111
|
|
|
|
|-
|204
|453.333
|
|
|
|
|-
|205
|455.556
|
|
|
|
|-
|206
|457.778
|
|
|
|
|-
|207
|460.000
|
|
|
|
|-
|208
|462.222
|
|
|
|
|-
|209
|464.444
|
|
|
|
|-
|210
|466.667
|
|
|
|
|-
|211
|468.889
|
|
|
|
|-
|212
|471.111
|
|
|
|
|-
|213
|473.333
|
|
|
|
|-
|214
|475.556
|
|
|
|
|-
|215
|477.778
|
|
|
|
|-
|216
|480.000
|
|
|
|
|-
|217
|482.222
|
|
|
|
|-
|218
|484.444
|
|
|
|
|-
|219
|486.667
|
|
|
|
|-
|220
|488.889
|
|
|
|
|-
|221
|491.111
|
|
|
|
|-
|222
|493.333
|
|
|
|
|-
|223
|495.556
|
|
|
|
|-
|224
|497.778
|
|
|
|
|-
|225
|500.000
|
|
|
|
|-
|226
|502.222
|
|
|
|
|-
|227
|504.444
|
|
|
|
|-
|228
|506.667
|
|
|
|
|-
|229
|508.889
|
|
|
|
|-
|230
|511.111
|
|
|
|
|-
|231
|513.333
|
|
|
|
|-
|232
|515.556
|
|
|
|
|-
|233
|517.778
|
|
|
|
|-
|234
|520.000
|
|
|
|
|-
|235
|522.222
|
|
|
|
|-
|236
|524.444
|
|
|
|
|-
|237
|526.667
|
|
|
|
|-
|238
|528.889
|
|
|
|
|-
|239
|531.111
|
|
|
|
|-
|240
|533.333
|
|
|
|
|-
|241
|535.556
|
|
|
|
|-
|242
|537.778
|
|
|
|
|-
|243
|540.000
|
|
|
|
|-
|244
|542.222
|
|
|
|
|-
|245
|544.444
|
|
|
|
|-
|246
|546.667
|
|
|
|
|-
|247
|548.889
|
|
|
|
|-
|248
|551.111
|
|
|
|
|-
|249
|553.333
|
|
|
|
|-
|250
|555.556
|
|
|
|
|-
|-
|251
! [[TE error|Absolute]] (¢)
|557.778
! [[TE simple badness|Relative]] (%)
|
|
|
|
|-
|-
|252
| 2.3.5.7.11.13.17
|560.000
| 676/675, 1001/1000, 1156/1155, 1716/1715, 3025/3024, 4096/4095
|
| {{mapping| 540 856 1254 1516 1868 1998 2207 }}
|
| -0.0022
|
| 0.1144
|
| 5.15
|-
|-
|253
| 2.3.5.7.11.13.17.19
|562.222
| 676/675, 1001/1000, 1156/1155, 1216/1215, 1331/1330, 1445/1444, 1729/1728
|
| {{mapping| 540 856 1254 1516 1868 1998 2207 2294 }}
|
| -0.0098
|
| 0.1088
|
| 4.90
|-
|-
|254
| 2.3.5.7.11.13.17.19.23
|564.444
| 676/675, 1001/1000, 1105/1104, 1156/1155, 1216/1215, 1331/1330, 1445/1444, 1496/1495
|
| {{mapping| 540 856 1254 1516 1868 1998 2207 2294 2443 }}
|
| -0.024
|
| 0.1100
|
| 4.95
|-
|255
|566.667
|
|
|
|
|-
|256
|568.889
|
|
|
|
|-
|257
|571.111
|
|
|
|
|-
|258
|573.333
|
|
|
|
|-
|259
|575.556
|
|
|
|
|-
|260
|577.778
|
|
|
|
|-
|261
|580.000
|
|
|
|
|-
|262
|582.222
|
|
|
|
|-
|263
|584.444
|
|
|
|
|-
|264
|586.667
|
|
|
|
|-
|265
|588.889
|
|
|
|
|-
|266
|591.111
|
|
|
|
|-
|267
|593.333
|
|
|
|
|-
|268
|595.556
|
|
|
|
|-
|269
|597.778
|
|
|
|
|-
|270
|600.000
|
|
|
|
|-
|271
|602.222
|
|
|
|
|-
|272
|604.444
|
|
|
|
|-
|273
|606.667
|
|
|
|
|-
|274
|608.889
|
|
|
|
|-
|275
|611.111
|
|
|
|
|-
|276
|613.333
|
|
|
|
|-
|277
|615.556
|
|
|
|
|-
|278
|617.778
|
|
|
|
|-
|279
|620.000
|
|
|
|
|-
|280
|622.222
|
|
|
|
|-
|281
|624.444
|
|
|
|
|-
|282
|626.667
|
|
|
|
|-
|283
|628.889
|
|
|
|
|-
|284
|631.111
|
|
|
|
|-
|285
|633.333
|
|
|
|
|-
|286
|635.556
|
|
|
|
|-
|287
|637.778
|
|
|
|
|-
|288
|640.000
|
|
|
|
|-
|289
|642.222
|
|
|
|
|-
|290
|644.444
|
|
|
|
|-
|291
|646.667
|
|
|
|
|-
|292
|648.889
|
|
|
|
|-
|293
|651.111
|
|
|
|
|-
|294
|653.333
|
|
|
|
|-
|295
|655.556
|
|
|
|
|-
|296
|657.778
|
|
|
|
|-
|297
|660.000
|
|
|
|
|-
|298
|662.222
|
|
|
|
|-
|299
|664.444
|
|
|
|
|-
|300
|666.667
|
|
|
|
|-
|301
|668.889
|
|
|
|
|-
|302
|671.111
|
|
|
|
|-
|303
|673.333
|
|
|
|
|-
|304
|675.556
|
|
|
|
|-
|305
|677.778
|
|
|
|
|-
|306
|680.000
|
|
|
|
|-
|307
|682.222
|
|
|
|
|-
|308
|684.444
|
|
|
|
|-
|309
|686.667
|
|
|
|
|-
|310
|688.889
|
|
|
|
|-
|311
|691.111
|
|
|
|
|-
|312
|693.333
|
|
|
|
|-
|313
|695.556
|
|
|
|
|-
|314
|697.778
|
|
|
|
|-
|315
|700.000
|
|
|
|
|-
|316
|702.222
|
|
|
|
|-
|317
|704.444
|
|
|
|
|-
|318
|706.667
|
|
|
|
|-
|319
|708.889
|
|
|
|
|-
|320
|711.111
|
|
|
|
|-
|321
|713.333
|
|
|
|
|-
|322
|715.556
|
|
|
|
|-
|323
|717.778
|
|
|
|
|-
|324
|720.000
|
|
|
|
|-
|325
|722.222
|
|
|
|
|-
|326
|724.444
|
|
|
|
|-
|327
|726.667
|
|
|
|
|-
|328
|728.889
|
|
|
|
|-
|329
|731.111
|
|
|
|
|-
|330
|733.333
|
|
|
|
|-
|331
|735.556
|
|
|
|
|-
|332
|737.778
|
|
|
|
|-
|333
|740.000
|
|
|
|
|-
|334
|742.222
|
|
|
|
|-
|335
|744.444
|
|
|
|
|-
|336
|746.667
|
|
|
|
|-
|337
|748.889
|
|
|
|
|-
|338
|751.111
|
|
|
|
|-
|339
|753.333
|
|
|
|
|-
|340
|755.556
|
|
|
|
|-
|341
|757.778
|
|
|
|
|-
|342
|760.000
|
|
|
|
|-
|343
|762.222
|
|
|
|
|-
|344
|764.444
|
|
|
|
|-
|345
|766.667
|
|
|
|
|-
|346
|768.889
|
|
|
|
|-
|347
|771.111
|
|
|
|
|-
|348
|773.333
|
|
|
|
|-
|349
|775.556
|
|
|
|
|-
|350
|777.778
|
|
|
|
|-
|351
|780.000
|
|
|
|
|-
|352
|782.222
|
|
|
|
|-
|353
|784.444
|
|
|
|
|-
|354
|786.667
|
|
|
|
|-
|355
|788.889
|
|
|
|
|-
|356
|791.111
|
|
|
|
|-
|357
|793.333
|
|
|
|
|-
|358
|795.556
|
|
|
|
|-
|359
|797.778
|
|
|
|
|-
|360
|800.000
|
|
|
|
|-
|361
|802.222
|
|
|
|
|-
|362
|804.444
|
|
|
|
|-
|363
|806.667
|
|
|
|
|-
|364
|808.889
|
|
|
|
|-
|365
|811.111
|
|
|
|
|-
|366
|813.333
|
|
|
|
|-
|367
|815.556
|
|
|
|
|-
|368
|817.778
|
|
|
|
|-
|369
|820.000
|
|
|
|
|-
|370
|822.222
|
|
|
|
|-
|371
|824.444
|
|
|
|
|-
|372
|826.667
|
|
|
|
|-
|373
|828.889
|
|
|
|
|-
|374
|831.111
|
|
|
|
|-
|375
|833.333
|
|
|
|
|-
|376
|835.556
|
|
|
|
|-
|377
|837.778
|
|
|
|
|-
|378
|840.000
|
|
|
|
|-
|379
|842.222
|
|
|
|
|-
|380
|844.444
|
|
|
|
|-
|381
|846.667
|
|
|
|
|-
|382
|848.889
|
|
|
|
|-
|383
|851.111
|
|
|
|
|-
|384
|853.333
|
|
|
|
|-
|385
|855.556
|
|
|
|
|-
|386
|857.778
|
|
|
|
|-
|387
|860.000
|
|
|
|
|-
|388
|862.222
|
|
|
|
|-
|389
|864.444
|
|
|
|
|-
|390
|866.667
|
|
|
|
|-
|391
|868.889
|
|
|
|
|-
|392
|871.111
|
|
|
|
|-
|393
|873.333
|
|
|
|
|-
|394
|875.556
|
|
|
|
|-
|395
|877.778
|
|
|
|
|-
|396
|880.000
|
|
|
|
|-
|397
|882.222
|
|
|
|
|-
|398
|884.444
|
|
|
|
|-
|399
|886.667
|
|
|
|
|-
|400
|888.889
|
|
|
|
|-
|401
|891.111
|
|
|
|
|-
|402
|893.333
|
|
|
|
|-
|403
|895.556
|
|
|
|
|-
|404
|897.778
|
|
|
|
|-
|405
|900.000
|
|
|
|
|-
|406
|902.222
|
|
|
|
|-
|407
|904.444
|
|
|
|
|-
|408
|906.667
|
|
|
|
|-
|409
|908.889
|
|
|
|
|-
|410
|911.111
|
|
|
|
|-
|411
|913.333
|
|
|
|
|-
|412
|915.556
|
|
|
|
|-
|413
|917.778
|
|
|
|
|-
|414
|920.000
|
|
|
|
|-
|415
|922.222
|
|
|
|
|-
|416
|924.444
|
|
|
|
|-
|417
|926.667
|
|
|
|
|-
|418
|928.889
|
|
|
|
|-
|419
|931.111
|
|
|
|
|-
|420
|933.333
|
|
|
|
|-
|421
|935.556
|
|
|
|
|-
|422
|937.778
|
|
|
|
|-
|423
|940.000
|
|
|
|
|-
|424
|942.222
|
|
|
|
|-
|425
|944.444
|
|
|
|
|-
|426
|946.667
|
|
|
|
|-
|427
|948.889
|
|
|
|
|-
|428
|951.111
|
|
|
|
|-
|429
|953.333
|
|
|
|
|-
|430
|955.556
|
|
|
|
|-
|431
|957.778
|
|
|
|
|-
|432
|960.000
|
|
|
|
|-
|433
|962.222
|
|
|
|
|-
|434
|964.444
|
|
|
|
|-
|435
|966.667
|
|
|
|
|-
|436
|968.889
|
|
|
|
|-
|437
|971.111
|
|
|
|
|-
|438
|973.333
|
|
|
|
|-
|439
|975.556
|
|
|
|
|-
|440
|977.778
|
|
|
|
|-
|441
|980.000
|
|
|
|
|-
|442
|982.222
|
|
|
|
|-
|443
|984.444
|
|
|
|
|-
|444
|986.667
|
|
|
|
|-
|445
|988.889
|
|
|
|
|-
|446
|991.111
|
|
|
|
|-
|447
|993.333
|
|
|
|
|-
|448
|995.556
|
|
|
|
|-
|449
|997.778
|
|
|
|
|-
|450
|1000.000
|
|
|
|
|-
|451
|1002.222
|
|
|
|
|-
|452
|1004.444
|
|
|
|
|-
|453
|1006.667
|
|
|
|
|-
|454
|1008.889
|
|
|
|
|-
|455
|1011.111
|
|
|
|
|-
|456
|1013.333
|
|
|
|
|-
|457
|1015.556
|
|
|
|
|-
|458
|1017.778
|
|
|
|
|-
|459
|1020.000
|
|
|
|
|-
|460
|1022.222
|
|
|
|
|-
|461
|1024.444
|
|
|
|
|-
|462
|1026.667
|
|
|
|
|-
|463
|1028.889
|
|
|
|
|-
|464
|1031.111
|
|
|
|
|-
|465
|1033.333
|
|
|
|
|-
|466
|1035.556
|
|
|
|
|-
|467
|1037.778
|
|
|
|
|-
|468
|1040.000
|
|
|
|
|-
|469
|1042.222
|
|
|
|
|-
|470
|1044.444
|
|
|
|
|-
|471
|1046.667
|
|
|
|
|-
|472
|1048.889
|
|
|
|
|-
|473
|1051.111
|
|
|
|
|-
|474
|1053.333
|
|
|
|
|-
|475
|1055.556
|
|
|
|
|-
|476
|1057.778
|
|
|
|
|-
|477
|1060.000
|
|
|
|
|-
|478
|1062.222
|
|
|
|
|-
|479
|1064.444
|
|
|
|
|-
|480
|1066.667
|
|
|
|
|-
|481
|1068.889
|
|
|
|
|-
|482
|1071.111
|
|
|
|
|-
|483
|1073.333
|
|
|
|
|-
|484
|1075.556
|
|
|
|
|-
|485
|1077.778
|
|
|
|
|-
|486
|1080.000
|
|
|
|
|-
|487
|1082.222
|
|
|
|
|-
|488
|1084.444
|
|
|
|
|-
|489
|1086.667
|
|
|
|
|-
|490
|1088.889
|
|
|
|
|-
|491
|1091.111
|
|
|
|
|-
|492
|1093.333
|
|
|
|
|-
|493
|1095.556
|
|
|
|
|-
|494
|1097.778
|
|
|
|
|-
|495
|1100.000
|
|
|
|
|-
|496
|1102.222
|
|
|
|
|-
|497
|1104.444
|
|
|
|
|-
|498
|1106.667
|
|
|
|
|-
|499
|1108.889
|
|
|
|
|-
|500
|1111.111
|
|
|
|
|-
|501
|1113.333
|
|
|
|
|-
|502
|1115.556
|
|
|
|
|-
|503
|1117.778
|
|
|
|
|-
|504
|1120.000
|
|
|
|
|-
|505
|1122.222
|
|
|
|
|-
|506
|1124.444
|
|
|
|
|-
|507
|1126.667
|
|
|
|
|-
|508
|1128.889
|
|
|
|
|-
|509
|1131.111
|
|
|
|
|-
|510
|1133.333
|
|
|
|
|-
|511
|1135.556
|
|
|
|
|-
|512
|1137.778
|
|
|
|
|-
|513
|1140.000
|
|
|
|
|-
|514
|1142.222
|
|
|
|
|-
|515
|1144.444
|
|
|
|
|-
|516
|1146.667
|
|
|
|
|-
|517
|1148.889
|
|
|
|
|-
|518
|1151.111
|
|
|
|
|-
|519
|1153.333
|
|
|
|
|-
|520
|1155.556
|
|
|
|
|-
|521
|1157.778
|
|
|
|
|-
|522
|1160.000
|
|
|
|
|-
|523
|1162.222
|
|
|
|
|-
|524
|1164.444
|
|
|
|
|-
|525
|1166.667
|
|
|
|
|-
|526
|1168.889
|
|
|
|
|-
|527
|1171.111
|
|
|
|
|-
|528
|1173.333
|
|
|
|
|-
|529
|1175.556
|
|
|
|
|-
|530
|1177.778
|
|
|
|
|-
|531
|1180.000
|
|
|
|
|-
|532
|1182.222
|
|
|
|
|-
|533
|1184.444
|
|
|
|
|-
|534
|1186.667
|
|
|
|
|-
|535
|1188.889
|
|
|
|
|-
|536
|1191.111
|
|
|
|
|-
|537
|1193.333
|
|
|
|
|-
|538
|1195.556
|
|
|
|
|-
|539
|1197.778
|
|
|
|
|-
|540
|1200.000
|
|
|
|
|}
|}
== Notes ==