1012edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 556732897 - Original comment: **
 
ArrowHead294 (talk | contribs)
mNo edit summary
 
(26 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-15 13:23:45 UTC</tt>.<br>
 
: The original revision id was <tt>556732897</tt>.<br>
== Theory ==
: The revision comment was: <tt></tt><br>
1012edo is a strong 13-limit system, [[consistency|distinctly consistent]] through the [[15-odd-limit]]. It is a [[zeta peak edo]], though not [[zeta integral edo|zeta integral]] nor [[zeta gap edo|zeta gap]]. A basis for the 13-limit [[comma]]s consists of [[2401/2400]], [[4096/4095]], [[6656/6655]], [[9801/9800]] and {{monzo| 2 6 -1 2 0 4 }}.
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
 
<h4>Original Wikitext content:</h4>
In the 5-limit, 1012edo is [[enfactoring|enfactored]], with the same tuning as [[506edo]], [[support]]ing [[vishnu]], [[monzismic]], and [[lafa]]. In the 7-limit, it [[tempering out|tempers out]] the [[breedsma]], 2401/2400, and tunes the [[osiris]] temperament. Furthermore, noting its exceptional strength in the 2.3.7 [[subgroup]], it is a [[septiruthenia]]n system, tempering 64/63 comma to 1/44th of the octave, that is 23 steps. It provides the [[optimal patent val]] for [[quarvish]] temperament in the 7-limit and also in the 11-limit.   
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 1012 equal division divides the octave into 1012 equal parts of 1.1858 cents each. It is a strong 13-limit system, distinctly consistent through the 15 limit. It is a [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. A basis for the 13-limit commas is 2401/2400, 4096/4095, 6656/6655, 9801/9800 and 142884/142805. 1012 is divisible by [[22edo|22]], [[46edo|46]] and [[253edo|253]].</pre></div>
 
<h4>Original HTML content:</h4>
=== Other techniques ===
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1012edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 1012 equal division divides the octave into 1012 equal parts of 1.1858 cents each. It is a strong 13-limit system, distinctly consistent through the 15 limit.  It is a  &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists"&gt;zeta peak edo&lt;/a&gt;, though not zeta integral nor zeta gap. A basis for the 13-limit commas is 2401/2400, 4096/4095, 6656/6655, 9801/9800 and 142884/142805. 1012 is divisible by &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46&lt;/a&gt; and &lt;a class="wiki_link" href="/253edo"&gt;253&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
In addition to containing 22edo and 23edo, it contains a [[22L 1s]] scale produced by generator of 45\1012 associated with [[33/32]], and is associated with the 45 & 1012 temperament, making it [[concoctic]]. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, {{monzo| 18 15 -12 -1  0 -3 }}.
 
In the 2.3.7.11.101, it tempers out [[7777/7776]] and is a tuning for the [[neutron star]] temperament.
 
=== Prime harmonics ===
{{Harmonics in equal|1012}}
 
=== Subsets and supersets ===
Since 1012 factors into {{factorization|1012}}, 1012edo has subset edos {{EDOs| 2, 4, 11, 22, 23, 44, 46, 92, 253, 506 }}. [[2024edo]], which divides the edostep in two, provides a good correction for the 17th harmonic.
 
== Regular temperament properties ==
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 361\1012
| 428.066
| 2800/2187
| [[Osiris]]
|-
| 2
| 491\1012
| 498.023
| 7/5
| [[Quarvish]]
|-
| 44
| 420\1012<br />(6\1012)
| 498.023<br />(7.115)
| 4/3<br />(18375/18304)
| [[Ruthenium]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct