612edo: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | == Theory == | ||
612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. | 612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. It [[tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]]. | ||
The 612edo has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]]. | The 612edo has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]]. | ||
Line 53: | Line 53: | ||
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095 | | 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095 | ||
| {{mapping| 612 970 1421 1718 2117 2265 2600 }} | | {{mapping| 612 970 1421 1718 2117 2265 2600 }} | ||
| | | −0.0168 | ||
| 0.0917 | | 0.0917 | ||
| 4.68 | | 4.68 | ||
Line 124: | Line 124: | ||
| [[Hemiennealimmal]] (11-limit) | | [[Hemiennealimmal]] (11-limit) | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Music == | == Music == | ||
Line 131: | Line 131: | ||
== Notes == | == Notes == | ||
<references /> | |||
[[Category:Ennealimmal]] | [[Category:Ennealimmal]] | ||
[[Category:Hemiennealimmal]] | [[Category:Hemiennealimmal]] | ||
[[Category:Listen]] | [[Category:Listen]] |