|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Sensamagic_clan#Bohpier|bohpier temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-08 01:47:58 UTC</tt>.<br>
| |
| : The original revision id was <tt>290312079</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Sensamagic clan#Bohpier|bohpier temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.
| |
|
| |
|
| Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the [[Bohlen-Pierce]] scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords. | | Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the [[Bohlen-Pierce|Bohlen-Pierce]] scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords. |
|
| |
|
| In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the [[sensamagic chords]] exist in strict Bohlen-Pierce. | | In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the [[sensamagic_chords|sensamagic chords]] exist in strict Bohlen-Pierce. |
|
| |
|
| =Triads= | | =Triads= |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-1-4 || 1-12/11-7/5 || swetismic ||
| |
| || 2 || 0-3-4 || 1-9/7-7/5 || swetismic ||
| |
| || 3 || 0-3-6 || 1-9/7-5/3 || sensamagic ||
| |
| || 4 || 0-1-7 || 1-12/11-20/11 || otonal ||
| |
| || 5 || 0-3-7 || 1-9/7-9/5 || utonal ||
| |
| || 6 || 0-4-7 || 1-7/5-9/5 || otonal ||
| |
| || 7 || 0-6-7 || 1-5/3-20/11 || utonal ||
| |
| || 8 || 0-3-10 || 1-9/7-7/6 || sensamagic ||
| |
| || 9 || 0-4-10 || 1-7/5-7/6 || utonal ||
| |
| || 10 || 0-6-10 || 1-5/3-7/6 || otonal ||
| |
| || 11 || 0-7-10 || 1-9/5-7/6 || sensamagic ||
| |
| || 12 || 0-1-11 || 1-12/11-14/11 || otonal ||
| |
| || 13 || 0-4-11 || 1-7/5-14/11 || utonal ||
| |
| || 14 || 0-7-11 || 1-20/11-14/11 || otonal ||
| |
| || 15 || 0-10-11 || 1-7/6-14/11 || utonal ||
| |
| || 16 || 0-1-12 || 1-12/11-11/8 || hemimin ||
| |
| || 17 || 0-6-12 || 1-5/3-11/8 || ptolemismic ||
| |
| || 18 || 0-11-12 || 1-14/11-11/8 || hemimin ||
| |
| || 19 || 0-1-13 || 1-12/11-3/2 || utonal ||
| |
| || 20 || 0-3-13 || 1-9/7-3/2 || utonal ||
| |
| || 21 || 0-6-13 || 1-5/3-3/2 || otonal ||
| |
| || 22 || 0-7-13 || 1-9/5-3/2 || utonal ||
| |
| || 23 || 0-10-13 || 1-7/6-3/2 || otonal ||
| |
| || 24 || 0-12-13 || 1-11/8-3/2 || otonal ||
| |
| || 25 || 0-1-14 || 1-12/11-18/11 || otonal ||
| |
| || 26 || 0-3-14 || 1-9/7-18/11 || utonal ||
| |
| || 27 || 0-4-14 || 1-7/5-18/11 || swetismic ||
| |
| || 28 || 0-7-14 || 1-9/5-18/11 || utonal ||
| |
| || 29 || 0-10-14 || 1-7/6-18/11 || swetismic ||
| |
| || 30 || 0-11-14 || 1-14/11-18/11 || otonal ||
| |
| || 31 || 0-13-14 || 1-3/2-18/11 || utonal ||
| |
| || 32 || 0-6-19 || 1-5/3-5/4 || utonal ||
| |
| || 33 || 0-7-19 || 1-20/11-5/4 || utonal ||
| |
| || 34 || 0-12-19 || 1-11/8-5/4 || otonal ||
| |
| || 35 || 0-13-19 || 1-3/2-5/4 || otonal ||
| |
| || 36 || 0-4-23 || 1-7/5-7/4 || utonal ||
| |
| || 37 || 0-10-23 || 1-7/6-7/4 || utonal ||
| |
| || 38 || 0-11-23 || 1-14/11-7/4 || utonal ||
| |
| || 39 || 0-12-23 || 1-11/8-7/4 || otonal ||
| |
| || 40 || 0-13-23 || 1-3/2-7/4 || otonal ||
| |
| || 41 || 0-19-23 || 1-5/4-7/4 || otonal ||
| |
| || 42 || 0-3-26 || 1-9/7-9/8 || utonal ||
| |
| || 43 || 0-7-26 || 1-9/5-9/8 || utonal ||
| |
| || 44 || 0-12-26 || 1-11/8-9/8 || otonal ||
| |
| || 45 || 0-13-26 || 1-3/2-9/8 || ambitonal ||
| |
| || 46 || 0-14-26 || 1-18/11-9/8 || utonal ||
| |
| || 47 || 0-19-26 || 1-5/4-9/8 || otonal ||
| |
| || 48 || 0-23-26 || 1-7/4-9/8 || otonal ||
| |
|
| |
|
| =Tetrads= | | {| class="wikitable" |
| || Number || Chord || Transversal || Type || | | |- |
| || 1 || 0-1-4-7 || 1-12/11-7/5-9/5 || octarod || | | | | Number |
| || 2 || 0-3-4-7 || 1-9/7-7/5-9/5 || swetismic || | | | | Chord |
| || 3 || 0-3-6-7 || 1-9/7-5/3-9/5 || octarod || | | | | Transversal |
| || 4 || 0-3-4-10 || 1-9/7-7/5-7/6 || octarod || | | | | Type |
| || 5 || 0-3-6-10 || 1-9/7-5/3-7/6 || sensamagic || | | |- |
| || 6 || 0-3-7-10 || 1-9/7-9/5-7/6 || sensamagic || | | | | 1 |
| || 7 || 0-4-7-10 || 1-7/5-9/5-7/6 || sensamagic || | | | | 0-1-4 |
| || 8 || 0-6-7-10 || 1-5/3-9/5-7/6 || octarod || | | | | 1-12/11-7/5 |
| || 9 || 0-1-4-11 || 1-12/11-7/5-14/11 || octarod || | | | | swetismic |
| || 10 || 0-1-7-11 || 1-12/11-20/11-14/11 || otonal || | | |- |
| || 11 || 0-4-7-11 || 1-7/5-9/5-14/11 || ptolemismic || | | | | 2 |
| || 12 || 0-4-10-11 || 1-7/5-7/6-14/11 || utonal || | | | | 0-3-4 |
| || 13 || 0-7-10-11 || 1-9/5-7/6-14/11 || octarod || | | | | 1-9/7-7/5 |
| || 14 || 0-1-11-12 || 1-12/11-14/11-11/8 || hemimin || | | | | swetismic |
| || 15 || 0-3-6-13 || 1-9/7-5/3-3/2 || sensamagic || | | |- |
| || 16 || 0-1-7-13 || 1-12/11-9/5-3/2 || ptolemismic || | | | | 3 |
| || 17 || 0-3-7-13 || 1-9/7-9/5-3/2 || utonal || | | | | 0-3-6 |
| || 18 || 0-6-7-13 || 1-5/3-9/5-3/2 || ptolemismic || | | | | 1-9/7-5/3 |
| || 19 || 0-3-10-13 || 1-9/7-7/6-3/2 || sensamagic || | | | | sensamagic |
| || 20 || 0-6-10-13 || 1-5/3-7/6-3/2 || otonal || | | |- |
| || 21 || 0-7-10-13 || 1-9/5-7/6-3/2 || sensamagic || | | | | 4 |
| || 22 || 0-1-12-13 || 1-12/11-11/8-3/2 || hemimin || | | | | 0-1-7 |
| || 23 || 0-6-12-13 || 1-5/3-11/8-3/2 || ptolemismic || | | | | 1-12/11-20/11 |
| || 24 || 0-1-4-14 || 1-12/11-7/5-18/11 || swetismic || | | | | otonal |
| || 25 || 0-3-4-14 || 1-9/7-7/5-18/11 || swetismic || | | |- |
| || 26 || 0-1-7-14 || 1-12/11-20/11-18/11 || otonal || | | | | 5 |
| || 27 || 0-3-7-14 || 1-9/7-9/5-18/11 || utonal || | | | | 0-3-7 |
| || 28 || 0-4-7-14 || 1-7/5-9/5-18/11 || octarod || | | | | 1-9/7-9/5 |
| || 29 || 0-3-10-14 || 1-9/7-7/6-18/11 || octarod || | | | | utonal |
| || 30 || 0-4-10-14 || 1-7/5-7/6-18/11 || swetismic || | | |- |
| || 31 || 0-7-10-14 || 1-9/5-7/6-18/11 || octarod || | | | | 6 |
| || 32 || 0-1-11-14 || 1-12/11-14/11-18/11 || otonal || | | | | 0-4-7 |
| || 33 || 0-4-11-14 || 1-7/5-14/11-18/11 || octarod || | | | | 1-7/5-9/5 |
| || 34 || 0-7-11-14 || 1-20/11-14/11-18/11 || otonal || | | | | otonal |
| || 35 || 0-10-11-14 || 1-7/6-14/11-18/11 || swetismic || | | |- |
| || 36 || 0-1-13-14 || 1-12/11-3/2-18/11 || ambitonal || | | | | 7 |
| || 37 || 0-3-13-14 || 1-9/7-3/2-18/11 || utonal || | | | | 0-6-7 |
| || 38 || 0-7-13-14 || 1-9/5-3/2-18/11 || utonal || | | | | 1-5/3-20/11 |
| || 39 || 0-10-13-14 || 1-7/6-3/2-18/11 || swetismic || | | | | utonal |
| || 40 || 0-6-7-19 || 1-5/3-20/11-5/4 || utonal || | | |- |
| || 41 || 0-6-12-19 || 1-5/3-11/8-5/4 || ptolemismic || | | | | 8 |
| || 42 || 0-6-13-19 || 1-5/3-3/2-5/4 || ambitonal || | | | | 0-3-10 |
| || 43 || 0-7-13-19 || 1-9/5-3/2-5/4 || ptolemismic || | | | | 1-9/7-7/6 |
| || 44 || 0-12-13-19 || 1-11/8-3/2-5/4 || otonal || | | | | sensamagic |
| || 45 || 0-4-10-23 || 1-7/5-7/6-7/4 || utonal || | | |- |
| || 46 || 0-4-11-23 || 1-7/5-14/11-7/4 || utonal || | | | | 9 |
| || 47 || 0-10-11-23 || 1-7/6-14/11-7/4 || utonal || | | | | 0-4-10 |
| || 48 || 0-11-12-23 || 1-14/11-11/8-7/4 || hemimin || | | | | 1-7/5-7/6 |
| || 49 || 0-10-13-23 || 1-7/6-3/2-7/4 || ambitonal ||
| | | | utonal |
| || 50 || 0-12-13-23 || 1-11/8-3/2-7/4 || otonal ||
| | |- |
| || 51 || 0-12-19-23 || 1-11/8-5/4-7/4 || otonal ||
| | | | 10 |
| || 52 || 0-13-19-23 || 1-3/2-5/4-7/4 || otonal ||
| | | | 0-6-10 |
| || 53 || 0-3-7-26 || 1-9/7-9/5-9/8 || utonal ||
| | | | 1-5/3-7/6 |
| || 54 || 0-3-13-26 || 1-9/7-3/2-9/8 || utonal ||
| | | | otonal |
| || 55 || 0-7-13-26 || 1-9/5-3/2-9/8 || utonal ||
| | |- |
| || 56 || 0-12-13-26 || 1-11/8-3/2-9/8 || otonal ||
| | | | 11 |
| || 57 || 0-3-14-26 || 1-9/7-18/11-9/8 || utonal ||
| | | | 0-7-10 |
| || 58 || 0-7-14-26 || 1-9/5-18/11-9/8 || utonal ||
| | | | 1-9/5-7/6 |
| || 59 || 0-13-14-26 || 1-3/2-18/11-9/8 || utonal ||
| | | | sensamagic |
| || 60 || 0-7-19-26 || 1-9/5-5/4-9/8 || ptolemismic ||
| | |- |
| || 61 || 0-12-19-26 || 1-11/8-5/4-9/8 || otonal ||
| | | | 12 |
| || 62 || 0-13-19-26 || 1-3/2-5/4-9/8 || otonal ||
| | | | 0-1-11 |
| || 63 || 0-12-23-26 || 1-11/8-7/4-9/8 || otonal ||
| | | | 1-12/11-14/11 |
| || 64 || 0-13-23-26 || 1-3/2-7/4-9/8 || otonal ||
| | | | otonal |
| || 65 || 0-19-23-26 || 1-5/4-7/4-9/8 || otonal ||
| | |- |
| | | | 13 |
| | | | 0-4-11 |
| | | | 1-7/5-14/11 |
| | | | utonal |
| | |- |
| | | | 14 |
| | | | 0-7-11 |
| | | | 1-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 15 |
| | | | 0-10-11 |
| | | | 1-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 16 |
| | | | 0-1-12 |
| | | | 1-12/11-11/8 |
| | | | hemimin |
| | |- |
| | | | 17 |
| | | | 0-6-12 |
| | | | 1-5/3-11/8 |
| | | | ptolemismic |
| | |- |
| | | | 18 |
| | | | 0-11-12 |
| | | | 1-14/11-11/8 |
| | | | hemimin |
| | |- |
| | | | 19 |
| | | | 0-1-13 |
| | | | 1-12/11-3/2 |
| | | | utonal |
| | |- |
| | | | 20 |
| | | | 0-3-13 |
| | | | 1-9/7-3/2 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-6-13 |
| | | | 1-5/3-3/2 |
| | | | otonal |
| | |- |
| | | | 22 |
| | | | 0-7-13 |
| | | | 1-9/5-3/2 |
| | | | utonal |
| | |- |
| | | | 23 |
| | | | 0-10-13 |
| | | | 1-7/6-3/2 |
| | | | otonal |
| | |- |
| | | | 24 |
| | | | 0-12-13 |
| | | | 1-11/8-3/2 |
| | | | otonal |
| | |- |
| | | | 25 |
| | | | 0-1-14 |
| | | | 1-12/11-18/11 |
| | | | otonal |
| | |- |
| | | | 26 |
| | | | 0-3-14 |
| | | | 1-9/7-18/11 |
| | | | utonal |
| | |- |
| | | | 27 |
| | | | 0-4-14 |
| | | | 1-7/5-18/11 |
| | | | swetismic |
| | |- |
| | | | 28 |
| | | | 0-7-14 |
| | | | 1-9/5-18/11 |
| | | | utonal |
| | |- |
| | | | 29 |
| | | | 0-10-14 |
| | | | 1-7/6-18/11 |
| | | | swetismic |
| | |- |
| | | | 30 |
| | | | 0-11-14 |
| | | | 1-14/11-18/11 |
| | | | otonal |
| | |- |
| | | | 31 |
| | | | 0-13-14 |
| | | | 1-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 32 |
| | | | 0-6-19 |
| | | | 1-5/3-5/4 |
| | | | utonal |
| | |- |
| | | | 33 |
| | | | 0-7-19 |
| | | | 1-20/11-5/4 |
| | | | utonal |
| | |- |
| | | | 34 |
| | | | 0-12-19 |
| | | | 1-11/8-5/4 |
| | | | otonal |
| | |- |
| | | | 35 |
| | | | 0-13-19 |
| | | | 1-3/2-5/4 |
| | | | otonal |
| | |- |
| | | | 36 |
| | | | 0-4-23 |
| | | | 1-7/5-7/4 |
| | | | utonal |
| | |- |
| | | | 37 |
| | | | 0-10-23 |
| | | | 1-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 38 |
| | | | 0-11-23 |
| | | | 1-14/11-7/4 |
| | | | utonal |
| | |- |
| | | | 39 |
| | | | 0-12-23 |
| | | | 1-11/8-7/4 |
| | | | otonal |
| | |- |
| | | | 40 |
| | | | 0-13-23 |
| | | | 1-3/2-7/4 |
| | | | otonal |
| | |- |
| | | | 41 |
| | | | 0-19-23 |
| | | | 1-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 42 |
| | | | 0-3-26 |
| | | | 1-9/7-9/8 |
| | | | utonal |
| | |- |
| | | | 43 |
| | | | 0-7-26 |
| | | | 1-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 44 |
| | | | 0-12-26 |
| | | | 1-11/8-9/8 |
| | | | otonal |
| | |- |
| | | | 45 |
| | | | 0-13-26 |
| | | | 1-3/2-9/8 |
| | | | ambitonal |
| | |- |
| | | | 46 |
| | | | 0-14-26 |
| | | | 1-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 47 |
| | | | 0-19-26 |
| | | | 1-5/4-9/8 |
| | | | otonal |
| | |- |
| | | | 48 |
| | | | 0-23-26 |
| | | | 1-7/4-9/8 |
| | | | otonal |
| | |} |
|
| |
|
| =Pentads= | | =Tetrads= |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-3-4-7-10 || 1-9/7-7/5-9/5-7/6 || octarod ||
| |
| || 2 || 0-3-6-7-10 || 1-9/7-5/3-9/5-7/6 || octarod ||
| |
| || 3 || 0-1-4-7-11 || 1-12/11-7/5-9/5-14/11 || octarod ||
| |
| || 4 || 0-4-7-10-11 || 1-7/5-9/5-7/6-14/11 || octarod ||
| |
| || 5 || 0-3-6-7-13 || 1-9/7-5/3-9/5-3/2 || octarod ||
| |
| || 6 || 0-3-6-10-13 || 1-9/7-5/3-7/6-3/2 || sensamagic ||
| |
| || 7 || 0-3-7-10-13 || 1-9/7-9/5-7/6-3/2 || sensamagic ||
| |
| || 8 || 0-6-7-10-13 || 1-5/3-9/5-7/6-3/2 || octarod ||
| |
| || 9 || 0-1-4-7-14 || 1-12/11-7/5-9/5-18/11 || octarod ||
| |
| || 10 || 0-3-4-7-14 || 1-9/7-7/5-9/5-18/11 || octarod ||
| |
| || 11 || 0-3-4-10-14 || 1-9/7-7/5-7/6-18/11 || octarod ||
| |
| || 12 || 0-3-7-10-14 || 1-9/7-9/5-7/6-18/11 || octarod ||
| |
| || 13 || 0-4-7-10-14 || 1-7/5-9/5-7/6-18/11 || octarod ||
| |
| || 14 || 0-1-4-11-14 || 1-12/11-7/5-14/11-18/11 || octarod ||
| |
| || 15 || 0-1-7-11-14 || 1-12/11-20/11-14/11-18/11 || otonal ||
| |
| || 16 || 0-4-7-11-14 || 1-7/5-9/5-14/11-18/11 || octarod ||
| |
| || 17 || 0-4-10-11-14 || 1-7/5-7/6-14/11-18/11 || octarod ||
| |
| || 18 || 0-7-10-11-14 || 1-9/5-7/6-14/11-18/11 || octarod ||
| |
| || 19 || 0-1-7-13-14 || 1-12/11-9/5-3/2-18/11 || ptolemismic ||
| |
| || 20 || 0-3-7-13-14 || 1-9/7-9/5-3/2-18/11 || utonal ||
| |
| || 21 || 0-3-10-13-14 || 1-9/7-7/6-3/2-18/11 || octarod ||
| |
| || 22 || 0-7-10-13-14 || 1-9/5-7/6-3/2-18/11 || octarod ||
| |
| || 23 || 0-6-7-13-19 || 1-5/3-9/5-3/2-5/4 || ptolemismic ||
| |
| || 24 || 0-6-12-13-19 || 1-5/3-11/8-3/2-5/4 || ptolemismic ||
| |
| || 25 || 0-4-10-11-23 || 1-7/5-7/6-14/11-7/4 || utonal ||
| |
| || 26 || 0-12-13-19-23 || 1-11/8-3/2-5/4-7/4 || otonal ||
| |
| || 27 || 0-3-7-13-26 || 1-9/7-9/5-3/2-9/8 || utonal ||
| |
| || 28 || 0-3-7-14-26 || 1-9/7-9/5-18/11-9/8 || utonal ||
| |
| || 29 || 0-3-13-14-26 || 1-9/7-3/2-18/11-9/8 || utonal ||
| |
| || 30 || 0-7-13-14-26 || 1-9/5-3/2-18/11-9/8 || utonal ||
| |
| || 31 || 0-7-13-19-26 || 1-9/5-3/2-5/4-9/8 || ptolemismic ||
| |
| || 32 || 0-12-13-19-26 || 1-11/8-3/2-5/4-9/8 || otonal ||
| |
| || 33 || 0-12-13-23-26 || 1-11/8-3/2-7/4-9/8 || otonal ||
| |
| || 34 || 0-12-19-23-26 || 1-11/8-5/4-7/4-9/8 || otonal ||
| |
| || 35 || 0-13-19-23-26 || 1-3/2-5/4-7/4-9/8 || otonal ||
| |
|
| |
|
| =Hexads= | | {| class="wikitable" |
| || Number || Chord || Transversal || Type || | | |- |
| || 1 || 0-3-6-7-10-13 || 1-9/7-5/3-9/5-7/6-3/2 || octarod || | | | | Number |
| || 2 || 0-3-4-7-10-14 || 1-9/7-7/5-9/5-7/6-18/11 || octarod || | | | | Chord |
| || 3 || 0-1-4-7-11-14 || 1-12/11-7/5-9/5-14/11-18/11 || octarod || | | | | Transversal |
| || 4 || 0-4-7-10-11-14 || 1-7/5-9/5-7/6-14/11-18/11 || octarod || | | | | Type |
| || 5 || 0-3-7-10-13-14 || 1-9/7-9/5-7/6-3/2-18/11 || octarod || | | |- |
| || 6 || 0-3-7-13-14-26 || 1-9/7-9/5-3/2-18/11-9/8 || utonal || | | | | 1 |
| || 7 || 0-12-13-19-23-26 || 1-11/8-3/2-5/4-7/4-9/8 || otonal ||</pre></div> | | | | 0-1-4-7 |
| <h4>Original HTML content:</h4>
| | | | 1-12/11-7/5-9/5 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of bohpier</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Sensamagic%20clan#Bohpier">bohpier temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.<br />
| | | | octarod |
| <br />
| | |- |
| Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords.<br />
| | | | 2 |
| <br />
| | | | 0-3-4-7 |
| In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the <a class="wiki_link" href="/sensamagic%20chords">sensamagic chords</a> exist in strict Bohlen-Pierce.<br />
| | | | 1-9/7-7/5-9/5 |
| <br />
| | | | swetismic |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| | |- |
|
| | | | 3 |
| | | | 0-3-6-7 |
| | | | 1-9/7-5/3-9/5 |
| | | | octarod |
| | |- |
| | | | 4 |
| | | | 0-3-4-10 |
| | | | 1-9/7-7/5-7/6 |
| | | | octarod |
| | |- |
| | | | 5 |
| | | | 0-3-6-10 |
| | | | 1-9/7-5/3-7/6 |
| | | | sensamagic |
| | |- |
| | | | 6 |
| | | | 0-3-7-10 |
| | | | 1-9/7-9/5-7/6 |
| | | | sensamagic |
| | |- |
| | | | 7 |
| | | | 0-4-7-10 |
| | | | 1-7/5-9/5-7/6 |
| | | | sensamagic |
| | |- |
| | | | 8 |
| | | | 0-6-7-10 |
| | | | 1-5/3-9/5-7/6 |
| | | | octarod |
| | |- |
| | | | 9 |
| | | | 0-1-4-11 |
| | | | 1-12/11-7/5-14/11 |
| | | | octarod |
| | |- |
| | | | 10 |
| | | | 0-1-7-11 |
| | | | 1-12/11-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 11 |
| | | | 0-4-7-11 |
| | | | 1-7/5-9/5-14/11 |
| | | | ptolemismic |
| | |- |
| | | | 12 |
| | | | 0-4-10-11 |
| | | | 1-7/5-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 13 |
| | | | 0-7-10-11 |
| | | | 1-9/5-7/6-14/11 |
| | | | octarod |
| | |- |
| | | | 14 |
| | | | 0-1-11-12 |
| | | | 1-12/11-14/11-11/8 |
| | | | hemimin |
| | |- |
| | | | 15 |
| | | | 0-3-6-13 |
| | | | 1-9/7-5/3-3/2 |
| | | | sensamagic |
| | |- |
| | | | 16 |
| | | | 0-1-7-13 |
| | | | 1-12/11-9/5-3/2 |
| | | | ptolemismic |
| | |- |
| | | | 17 |
| | | | 0-3-7-13 |
| | | | 1-9/7-9/5-3/2 |
| | | | utonal |
| | |- |
| | | | 18 |
| | | | 0-6-7-13 |
| | | | 1-5/3-9/5-3/2 |
| | | | ptolemismic |
| | |- |
| | | | 19 |
| | | | 0-3-10-13 |
| | | | 1-9/7-7/6-3/2 |
| | | | sensamagic |
| | |- |
| | | | 20 |
| | | | 0-6-10-13 |
| | | | 1-5/3-7/6-3/2 |
| | | | otonal |
| | |- |
| | | | 21 |
| | | | 0-7-10-13 |
| | | | 1-9/5-7/6-3/2 |
| | | | sensamagic |
| | |- |
| | | | 22 |
| | | | 0-1-12-13 |
| | | | 1-12/11-11/8-3/2 |
| | | | hemimin |
| | |- |
| | | | 23 |
| | | | 0-6-12-13 |
| | | | 1-5/3-11/8-3/2 |
| | | | ptolemismic |
| | |- |
| | | | 24 |
| | | | 0-1-4-14 |
| | | | 1-12/11-7/5-18/11 |
| | | | swetismic |
| | |- |
| | | | 25 |
| | | | 0-3-4-14 |
| | | | 1-9/7-7/5-18/11 |
| | | | swetismic |
| | |- |
| | | | 26 |
| | | | 0-1-7-14 |
| | | | 1-12/11-20/11-18/11 |
| | | | otonal |
| | |- |
| | | | 27 |
| | | | 0-3-7-14 |
| | | | 1-9/7-9/5-18/11 |
| | | | utonal |
| | |- |
| | | | 28 |
| | | | 0-4-7-14 |
| | | | 1-7/5-9/5-18/11 |
| | | | octarod |
| | |- |
| | | | 29 |
| | | | 0-3-10-14 |
| | | | 1-9/7-7/6-18/11 |
| | | | octarod |
| | |- |
| | | | 30 |
| | | | 0-4-10-14 |
| | | | 1-7/5-7/6-18/11 |
| | | | swetismic |
| | |- |
| | | | 31 |
| | | | 0-7-10-14 |
| | | | 1-9/5-7/6-18/11 |
| | | | octarod |
| | |- |
| | | | 32 |
| | | | 0-1-11-14 |
| | | | 1-12/11-14/11-18/11 |
| | | | otonal |
| | |- |
| | | | 33 |
| | | | 0-4-11-14 |
| | | | 1-7/5-14/11-18/11 |
| | | | octarod |
| | |- |
| | | | 34 |
| | | | 0-7-11-14 |
| | | | 1-20/11-14/11-18/11 |
| | | | otonal |
| | |- |
| | | | 35 |
| | | | 0-10-11-14 |
| | | | 1-7/6-14/11-18/11 |
| | | | swetismic |
| | |- |
| | | | 36 |
| | | | 0-1-13-14 |
| | | | 1-12/11-3/2-18/11 |
| | | | ambitonal |
| | |- |
| | | | 37 |
| | | | 0-3-13-14 |
| | | | 1-9/7-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 38 |
| | | | 0-7-13-14 |
| | | | 1-9/5-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 39 |
| | | | 0-10-13-14 |
| | | | 1-7/6-3/2-18/11 |
| | | | swetismic |
| | |- |
| | | | 40 |
| | | | 0-6-7-19 |
| | | | 1-5/3-20/11-5/4 |
| | | | utonal |
| | |- |
| | | | 41 |
| | | | 0-6-12-19 |
| | | | 1-5/3-11/8-5/4 |
| | | | ptolemismic |
| | |- |
| | | | 42 |
| | | | 0-6-13-19 |
| | | | 1-5/3-3/2-5/4 |
| | | | ambitonal |
| | |- |
| | | | 43 |
| | | | 0-7-13-19 |
| | | | 1-9/5-3/2-5/4 |
| | | | ptolemismic |
| | |- |
| | | | 44 |
| | | | 0-12-13-19 |
| | | | 1-11/8-3/2-5/4 |
| | | | otonal |
| | |- |
| | | | 45 |
| | | | 0-4-10-23 |
| | | | 1-7/5-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 46 |
| | | | 0-4-11-23 |
| | | | 1-7/5-14/11-7/4 |
| | | | utonal |
| | |- |
| | | | 47 |
| | | | 0-10-11-23 |
| | | | 1-7/6-14/11-7/4 |
| | | | utonal |
| | |- |
| | | | 48 |
| | | | 0-11-12-23 |
| | | | 1-14/11-11/8-7/4 |
| | | | hemimin |
| | |- |
| | | | 49 |
| | | | 0-10-13-23 |
| | | | 1-7/6-3/2-7/4 |
| | | | ambitonal |
| | |- |
| | | | 50 |
| | | | 0-12-13-23 |
| | | | 1-11/8-3/2-7/4 |
| | | | otonal |
| | |- |
| | | | 51 |
| | | | 0-12-19-23 |
| | | | 1-11/8-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 52 |
| | | | 0-13-19-23 |
| | | | 1-3/2-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 53 |
| | | | 0-3-7-26 |
| | | | 1-9/7-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 54 |
| | | | 0-3-13-26 |
| | | | 1-9/7-3/2-9/8 |
| | | | utonal |
| | |- |
| | | | 55 |
| | | | 0-7-13-26 |
| | | | 1-9/5-3/2-9/8 |
| | | | utonal |
| | |- |
| | | | 56 |
| | | | 0-12-13-26 |
| | | | 1-11/8-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 57 |
| | | | 0-3-14-26 |
| | | | 1-9/7-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 58 |
| | | | 0-7-14-26 |
| | | | 1-9/5-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 59 |
| | | | 0-13-14-26 |
| | | | 1-3/2-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 60 |
| | | | 0-7-19-26 |
| | | | 1-9/5-5/4-9/8 |
| | | | ptolemismic |
| | |- |
| | | | 61 |
| | | | 0-12-19-26 |
| | | | 1-11/8-5/4-9/8 |
| | | | otonal |
| | |- |
| | | | 62 |
| | | | 0-13-19-26 |
| | | | 1-3/2-5/4-9/8 |
| | | | otonal |
| | |- |
| | | | 63 |
| | | | 0-12-23-26 |
| | | | 1-11/8-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 64 |
| | | | 0-13-23-26 |
| | | | 1-3/2-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 65 |
| | | | 0-19-23-26 |
| | | | 1-5/4-7/4-9/8 |
| | | | otonal |
| | |} |
|
| |
|
| <table class="wiki_table">
| | =Pentads= |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-4<br />
| |
| </td>
| |
| <td>1-12/11-7/5<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-3-4<br />
| |
| </td>
| |
| <td>1-9/7-7/5<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-3-6<br />
| |
| </td>
| |
| <td>1-9/7-5/3<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-1-7<br />
| |
| </td>
| |
| <td>1-12/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-7<br />
| |
| </td>
| |
| <td>1-9/7-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-4-7<br />
| |
| </td>
| |
| <td>1-7/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-6-7<br />
| |
| </td>
| |
| <td>1-5/3-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-3-10<br />
| |
| </td>
| |
| <td>1-9/7-7/6<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-4-10<br />
| |
| </td>
| |
| <td>1-7/5-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-6-10<br />
| |
| </td>
| |
| <td>1-5/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-7-10<br />
| |
| </td>
| |
| <td>1-9/5-7/6<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-1-11<br />
| |
| </td>
| |
| <td>1-12/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-11<br />
| |
| </td>
| |
| <td>1-7/5-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-7-11<br />
| |
| </td>
| |
| <td>1-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-10-11<br />
| |
| </td>
| |
| <td>1-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-1-12<br />
| |
| </td>
| |
| <td>1-12/11-11/8<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-6-12<br />
| |
| </td>
| |
| <td>1-5/3-11/8<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-11-12<br />
| |
| </td>
| |
| <td>1-14/11-11/8<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-1-13<br />
| |
| </td>
| |
| <td>1-12/11-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-3-13<br />
| |
| </td>
| |
| <td>1-9/7-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-6-13<br />
| |
| </td>
| |
| <td>1-5/3-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-7-13<br />
| |
| </td>
| |
| <td>1-9/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-10-13<br />
| |
| </td>
| |
| <td>1-7/6-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-12-13<br />
| |
| </td>
| |
| <td>1-11/8-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-1-14<br />
| |
| </td>
| |
| <td>1-12/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-3-14<br />
| |
| </td>
| |
| <td>1-9/7-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-4-14<br />
| |
| </td>
| |
| <td>1-7/5-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-7-14<br />
| |
| </td>
| |
| <td>1-9/5-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-10-14<br />
| |
| </td>
| |
| <td>1-7/6-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-11-14<br />
| |
| </td>
| |
| <td>1-14/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-13-14<br />
| |
| </td>
| |
| <td>1-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-6-19<br />
| |
| </td>
| |
| <td>1-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-7-19<br />
| |
| </td>
| |
| <td>1-20/11-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-12-19<br />
| |
| </td>
| |
| <td>1-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-13-19<br />
| |
| </td>
| |
| <td>1-3/2-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-4-23<br />
| |
| </td>
| |
| <td>1-7/5-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-10-23<br />
| |
| </td>
| |
| <td>1-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-11-23<br />
| |
| </td>
| |
| <td>1-14/11-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-12-23<br />
| |
| </td>
| |
| <td>1-11/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-13-23<br />
| |
| </td>
| |
| <td>1-3/2-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-19-23<br />
| |
| </td>
| |
| <td>1-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-3-26<br />
| |
| </td>
| |
| <td>1-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-7-26<br />
| |
| </td>
| |
| <td>1-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-12-26<br />
| |
| </td>
| |
| <td>1-11/8-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-13-26<br />
| |
| </td>
| |
| <td>1-3/2-9/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-14-26<br />
| |
| </td>
| |
| <td>1-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-19-26<br />
| |
| </td>
| |
| <td>1-5/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-23-26<br />
| |
| </td>
| |
| <td>1-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable" |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| | |- |
|
| | | | Number |
| | | | Chord |
| | | | Transversal |
| | | | Type |
| | |- |
| | | | 1 |
| | | | 0-3-4-7-10 |
| | | | 1-9/7-7/5-9/5-7/6 |
| | | | octarod |
| | |- |
| | | | 2 |
| | | | 0-3-6-7-10 |
| | | | 1-9/7-5/3-9/5-7/6 |
| | | | octarod |
| | |- |
| | | | 3 |
| | | | 0-1-4-7-11 |
| | | | 1-12/11-7/5-9/5-14/11 |
| | | | octarod |
| | |- |
| | | | 4 |
| | | | 0-4-7-10-11 |
| | | | 1-7/5-9/5-7/6-14/11 |
| | | | octarod |
| | |- |
| | | | 5 |
| | | | 0-3-6-7-13 |
| | | | 1-9/7-5/3-9/5-3/2 |
| | | | octarod |
| | |- |
| | | | 6 |
| | | | 0-3-6-10-13 |
| | | | 1-9/7-5/3-7/6-3/2 |
| | | | sensamagic |
| | |- |
| | | | 7 |
| | | | 0-3-7-10-13 |
| | | | 1-9/7-9/5-7/6-3/2 |
| | | | sensamagic |
| | |- |
| | | | 8 |
| | | | 0-6-7-10-13 |
| | | | 1-5/3-9/5-7/6-3/2 |
| | | | octarod |
| | |- |
| | | | 9 |
| | | | 0-1-4-7-14 |
| | | | 1-12/11-7/5-9/5-18/11 |
| | | | octarod |
| | |- |
| | | | 10 |
| | | | 0-3-4-7-14 |
| | | | 1-9/7-7/5-9/5-18/11 |
| | | | octarod |
| | |- |
| | | | 11 |
| | | | 0-3-4-10-14 |
| | | | 1-9/7-7/5-7/6-18/11 |
| | | | octarod |
| | |- |
| | | | 12 |
| | | | 0-3-7-10-14 |
| | | | 1-9/7-9/5-7/6-18/11 |
| | | | octarod |
| | |- |
| | | | 13 |
| | | | 0-4-7-10-14 |
| | | | 1-7/5-9/5-7/6-18/11 |
| | | | octarod |
| | |- |
| | | | 14 |
| | | | 0-1-4-11-14 |
| | | | 1-12/11-7/5-14/11-18/11 |
| | | | octarod |
| | |- |
| | | | 15 |
| | | | 0-1-7-11-14 |
| | | | 1-12/11-20/11-14/11-18/11 |
| | | | otonal |
| | |- |
| | | | 16 |
| | | | 0-4-7-11-14 |
| | | | 1-7/5-9/5-14/11-18/11 |
| | | | octarod |
| | |- |
| | | | 17 |
| | | | 0-4-10-11-14 |
| | | | 1-7/5-7/6-14/11-18/11 |
| | | | octarod |
| | |- |
| | | | 18 |
| | | | 0-7-10-11-14 |
| | | | 1-9/5-7/6-14/11-18/11 |
| | | | octarod |
| | |- |
| | | | 19 |
| | | | 0-1-7-13-14 |
| | | | 1-12/11-9/5-3/2-18/11 |
| | | | ptolemismic |
| | |- |
| | | | 20 |
| | | | 0-3-7-13-14 |
| | | | 1-9/7-9/5-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-3-10-13-14 |
| | | | 1-9/7-7/6-3/2-18/11 |
| | | | octarod |
| | |- |
| | | | 22 |
| | | | 0-7-10-13-14 |
| | | | 1-9/5-7/6-3/2-18/11 |
| | | | octarod |
| | |- |
| | | | 23 |
| | | | 0-6-7-13-19 |
| | | | 1-5/3-9/5-3/2-5/4 |
| | | | ptolemismic |
| | |- |
| | | | 24 |
| | | | 0-6-12-13-19 |
| | | | 1-5/3-11/8-3/2-5/4 |
| | | | ptolemismic |
| | |- |
| | | | 25 |
| | | | 0-4-10-11-23 |
| | | | 1-7/5-7/6-14/11-7/4 |
| | | | utonal |
| | |- |
| | | | 26 |
| | | | 0-12-13-19-23 |
| | | | 1-11/8-3/2-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 27 |
| | | | 0-3-7-13-26 |
| | | | 1-9/7-9/5-3/2-9/8 |
| | | | utonal |
| | |- |
| | | | 28 |
| | | | 0-3-7-14-26 |
| | | | 1-9/7-9/5-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 29 |
| | | | 0-3-13-14-26 |
| | | | 1-9/7-3/2-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 30 |
| | | | 0-7-13-14-26 |
| | | | 1-9/5-3/2-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 31 |
| | | | 0-7-13-19-26 |
| | | | 1-9/5-3/2-5/4-9/8 |
| | | | ptolemismic |
| | |- |
| | | | 32 |
| | | | 0-12-13-19-26 |
| | | | 1-11/8-3/2-5/4-9/8 |
| | | | otonal |
| | |- |
| | | | 33 |
| | | | 0-12-13-23-26 |
| | | | 1-11/8-3/2-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 34 |
| | | | 0-12-19-23-26 |
| | | | 1-11/8-5/4-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 35 |
| | | | 0-13-19-23-26 |
| | | | 1-3/2-5/4-7/4-9/8 |
| | | | otonal |
| | |} |
|
| |
|
| <table class="wiki_table">
| | =Hexads= |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-4-7<br />
| |
| </td>
| |
| <td>1-12/11-7/5-9/5<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-3-4-7<br />
| |
| </td>
| |
| <td>1-9/7-7/5-9/5<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-3-6-7<br />
| |
| </td>
| |
| <td>1-9/7-5/3-9/5<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-3-4-10<br />
| |
| </td>
| |
| <td>1-9/7-7/5-7/6<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-6-10<br />
| |
| </td>
| |
| <td>1-9/7-5/3-7/6<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-7-10<br />
| |
| </td>
| |
| <td>1-9/7-9/5-7/6<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-4-7-10<br />
| |
| </td>
| |
| <td>1-7/5-9/5-7/6<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-6-7-10<br />
| |
| </td>
| |
| <td>1-5/3-9/5-7/6<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-1-4-11<br />
| |
| </td>
| |
| <td>1-12/11-7/5-14/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-1-7-11<br />
| |
| </td>
| |
| <td>1-12/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-4-7-11<br />
| |
| </td>
| |
| <td>1-7/5-9/5-14/11<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-4-10-11<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-7-10-11<br />
| |
| </td>
| |
| <td>1-9/5-7/6-14/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-1-11-12<br />
| |
| </td>
| |
| <td>1-12/11-14/11-11/8<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-3-6-13<br />
| |
| </td>
| |
| <td>1-9/7-5/3-3/2<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-1-7-13<br />
| |
| </td>
| |
| <td>1-12/11-9/5-3/2<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-3-7-13<br />
| |
| </td>
| |
| <td>1-9/7-9/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-6-7-13<br />
| |
| </td>
| |
| <td>1-5/3-9/5-3/2<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-3-10-13<br />
| |
| </td>
| |
| <td>1-9/7-7/6-3/2<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-6-10-13<br />
| |
| </td>
| |
| <td>1-5/3-7/6-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-7-10-13<br />
| |
| </td>
| |
| <td>1-9/5-7/6-3/2<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-1-12-13<br />
| |
| </td>
| |
| <td>1-12/11-11/8-3/2<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-6-12-13<br />
| |
| </td>
| |
| <td>1-5/3-11/8-3/2<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-1-4-14<br />
| |
| </td>
| |
| <td>1-12/11-7/5-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-3-4-14<br />
| |
| </td>
| |
| <td>1-9/7-7/5-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-1-7-14<br />
| |
| </td>
| |
| <td>1-12/11-20/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-3-7-14<br />
| |
| </td>
| |
| <td>1-9/7-9/5-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-4-7-14<br />
| |
| </td>
| |
| <td>1-7/5-9/5-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-3-10-14<br />
| |
| </td>
| |
| <td>1-9/7-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-4-10-14<br />
| |
| </td>
| |
| <td>1-7/5-7/6-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-7-10-14<br />
| |
| </td>
| |
| <td>1-9/5-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-1-11-14<br />
| |
| </td>
| |
| <td>1-12/11-14/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-4-11-14<br />
| |
| </td>
| |
| <td>1-7/5-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-7-11-14<br />
| |
| </td>
| |
| <td>1-20/11-14/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-10-11-14<br />
| |
| </td>
| |
| <td>1-7/6-14/11-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-1-13-14<br />
| |
| </td>
| |
| <td>1-12/11-3/2-18/11<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-3-13-14<br />
| |
| </td>
| |
| <td>1-9/7-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-7-13-14<br />
| |
| </td>
| |
| <td>1-9/5-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-10-13-14<br />
| |
| </td>
| |
| <td>1-7/6-3/2-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-6-7-19<br />
| |
| </td>
| |
| <td>1-5/3-20/11-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-6-12-19<br />
| |
| </td>
| |
| <td>1-5/3-11/8-5/4<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-6-13-19<br />
| |
| </td>
| |
| <td>1-5/3-3/2-5/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-7-13-19<br />
| |
| </td>
| |
| <td>1-9/5-3/2-5/4<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-12-13-19<br />
| |
| </td>
| |
| <td>1-11/8-3/2-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-4-10-23<br />
| |
| </td>
| |
| <td>1-7/5-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-4-11-23<br />
| |
| </td>
| |
| <td>1-7/5-14/11-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-10-11-23<br />
| |
| </td>
| |
| <td>1-7/6-14/11-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-11-12-23<br />
| |
| </td>
| |
| <td>1-14/11-11/8-7/4<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-10-13-23<br />
| |
| </td>
| |
| <td>1-7/6-3/2-7/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-12-13-23<br />
| |
| </td>
| |
| <td>1-11/8-3/2-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-12-19-23<br />
| |
| </td>
| |
| <td>1-11/8-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-13-19-23<br />
| |
| </td>
| |
| <td>1-3/2-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-3-7-26<br />
| |
| </td>
| |
| <td>1-9/7-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-3-13-26<br />
| |
| </td>
| |
| <td>1-9/7-3/2-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-7-13-26<br />
| |
| </td>
| |
| <td>1-9/5-3/2-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-12-13-26<br />
| |
| </td>
| |
| <td>1-11/8-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-3-14-26<br />
| |
| </td>
| |
| <td>1-9/7-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-7-14-26<br />
| |
| </td>
| |
| <td>1-9/5-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-13-14-26<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-7-19-26<br />
| |
| </td>
| |
| <td>1-9/5-5/4-9/8<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-12-19-26<br />
| |
| </td>
| |
| <td>1-11/8-5/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-13-19-26<br />
| |
| </td>
| |
| <td>1-3/2-5/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-12-23-26<br />
| |
| </td>
| |
| <td>1-11/8-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>0-13-23-26<br />
| |
| </td>
| |
| <td>1-3/2-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>0-19-23-26<br />
| |
| </td>
| |
| <td>1-5/4-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable" |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| | |- |
|
| | | | Number |
| | | | | Chord |
| <table class="wiki_table">
| | | | Transversal |
| <tr>
| | | | Type |
| <td>Number<br />
| | |- |
| </td>
| | | | 1 |
| <td>Chord<br />
| | | | 0-3-6-7-10-13 |
| </td>
| | | | 1-9/7-5/3-9/5-7/6-3/2 |
| <td>Transversal<br />
| | | | octarod |
| </td>
| | |- |
| <td>Type<br />
| | | | 2 |
| </td>
| | | | 0-3-4-7-10-14 |
| </tr>
| | | | 1-9/7-7/5-9/5-7/6-18/11 |
| <tr>
| | | | octarod |
| <td>1<br />
| | |- |
| </td>
| | | | 3 |
| <td>0-3-4-7-10<br />
| | | | 0-1-4-7-11-14 |
| </td>
| | | | 1-12/11-7/5-9/5-14/11-18/11 |
| <td>1-9/7-7/5-9/5-7/6<br />
| | | | octarod |
| </td>
| | |- |
| <td>octarod<br />
| | | | 4 |
| </td>
| | | | 0-4-7-10-11-14 |
| </tr>
| | | | 1-7/5-9/5-7/6-14/11-18/11 |
| <tr>
| | | | octarod |
| <td>2<br />
| | |- |
| </td>
| | | | 5 |
| <td>0-3-6-7-10<br />
| | | | 0-3-7-10-13-14 |
| </td>
| | | | 1-9/7-9/5-7/6-3/2-18/11 |
| <td>1-9/7-5/3-9/5-7/6<br />
| | | | octarod |
| </td>
| | |- |
| <td>octarod<br />
| | | | 6 |
| </td>
| | | | 0-3-7-13-14-26 |
| </tr>
| | | | 1-9/7-9/5-3/2-18/11-9/8 |
| <tr>
| | | | utonal |
| <td>3<br />
| | |- |
| </td>
| | | | 7 |
| <td>0-1-4-7-11<br />
| | | | 0-12-13-19-23-26 |
| </td>
| | | | 1-11/8-3/2-5/4-7/4-9/8 |
| <td>1-12/11-7/5-9/5-14/11<br />
| | | | otonal |
| </td>
| | |} |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-4-7-10-11<br />
| |
| </td>
| |
| <td>1-7/5-9/5-7/6-14/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-6-7-13<br />
| |
| </td>
| |
| <td>1-9/7-5/3-9/5-3/2<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-6-10-13<br />
| |
| </td>
| |
| <td>1-9/7-5/3-7/6-3/2<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-3-7-10-13<br />
| |
| </td>
| |
| <td>1-9/7-9/5-7/6-3/2<br />
| |
| </td>
| |
| <td>sensamagic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-6-7-10-13<br />
| |
| </td>
| |
| <td>1-5/3-9/5-7/6-3/2<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-1-4-7-14<br />
| |
| </td>
| |
| <td>1-12/11-7/5-9/5-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-3-4-7-14<br />
| |
| </td>
| |
| <td>1-9/7-7/5-9/5-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-3-4-10-14<br />
| |
| </td>
| |
| <td>1-9/7-7/5-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-3-7-10-14<br />
| |
| </td>
| |
| <td>1-9/7-9/5-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-7-10-14<br />
| |
| </td>
| |
| <td>1-7/5-9/5-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-1-4-11-14<br />
| |
| </td>
| |
| <td>1-12/11-7/5-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-1-7-11-14<br />
| |
| </td>
| |
| <td>1-12/11-20/11-14/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-4-7-11-14<br />
| |
| </td>
| |
| <td>1-7/5-9/5-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-4-10-11-14<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-7-10-11-14<br />
| |
| </td>
| |
| <td>1-9/5-7/6-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-1-7-13-14<br />
| |
| </td>
| |
| <td>1-12/11-9/5-3/2-18/11<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-3-7-13-14<br />
| |
| </td>
| |
| <td>1-9/7-9/5-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-3-10-13-14<br />
| |
| </td>
| |
| <td>1-9/7-7/6-3/2-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-7-10-13-14<br />
| |
| </td>
| |
| <td>1-9/5-7/6-3/2-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-6-7-13-19<br />
| |
| </td>
| |
| <td>1-5/3-9/5-3/2-5/4<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-6-12-13-19<br />
| |
| </td>
| |
| <td>1-5/3-11/8-3/2-5/4<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-4-10-11-23<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-12-13-19-23<br />
| |
| </td>
| |
| <td>1-11/8-3/2-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-3-7-13-26<br />
| |
| </td>
| |
| <td>1-9/7-9/5-3/2-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-3-7-14-26<br />
| |
| </td>
| |
| <td>1-9/7-9/5-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-3-13-14-26<br />
| |
| </td>
| |
| <td>1-9/7-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-7-13-14-26<br />
| |
| </td>
| |
| <td>1-9/5-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-7-13-19-26<br />
| |
| </td>
| |
| <td>1-9/5-3/2-5/4-9/8<br />
| |
| </td>
| |
| <td>ptolemismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-12-13-19-26<br />
| |
| </td>
| |
| <td>1-11/8-3/2-5/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-12-13-23-26<br />
| |
| </td>
| |
| <td>1-11/8-3/2-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-12-19-23-26<br />
| |
| </td>
| |
| <td>1-11/8-5/4-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-13-19-23-26<br />
| |
| </td>
| |
| <td>1-3/2-5/4-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
|
| |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-3-6-7-10-13<br />
| |
| </td>
| |
| <td>1-9/7-5/3-9/5-7/6-3/2<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-3-4-7-10-14<br />
| |
| </td>
| |
| <td>1-9/7-7/5-9/5-7/6-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-1-4-7-11-14<br />
| |
| </td>
| |
| <td>1-12/11-7/5-9/5-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-4-7-10-11-14<br />
| |
| </td>
| |
| <td>1-7/5-9/5-7/6-14/11-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-7-10-13-14<br />
| |
| </td>
| |
| <td>1-9/7-9/5-7/6-3/2-18/11<br />
| |
| </td>
| |
| <td>octarod<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-7-13-14-26<br />
| |
| </td>
| |
| <td>1-9/7-9/5-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-12-13-19-23-26<br />
| |
| </td>
| |
| <td>1-11/8-3/2-5/4-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| </body></html></pre></div>
| |