|
|
(3 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Würschmidt_family#Hemiwürschmidt|hemiwur temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 valinorsmic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-01 01:25:57 UTC</tt>.<br>
| |
| : The original revision id was <tt>288950691</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwur temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 werckismic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus.
| |
|
| |
|
| Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads. | | Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads. |
|
| |
|
| =Triads= | | =Triads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-2-4 || 1-5/4-11/7 || valinorsmic || | | {| class="wikitable" |
| || 2 || 0-2-5 || 1-5/4-7/4 || otonal || | | |- |
| || 3 || 0-3-5 || 1-7/5-7/4 || utonal || | | | | Number |
| || 4 || 0-2-7 || 1-5/4-11/10 || valinorsmic || | | | | Chord |
| || 5 || 0-3-7 || 1-7/5-11/10 || otonal || | | | | Transversal |
| || 6 || 0-4-7 || 1-11/7-11/10 || utonal || | | | | Type |
| || 7 || 0-5-7 || 1-7/4-11/10 || valinorsmic || | | |- |
| || 8 || 0-2-9 || 1-5/4-11/8 || otonal || | | | | 1 |
| || 9 || 0-4-9 || 1-11/7-11/8 || utonal || | | | | 0-2-4 |
| || 10 || 0-5-9 || 1-7/4-11/8 || otonal || | | | | 1-5/4-11/7 |
| || 11 || 0-7-9 || 1-11/10-11/8 || utonal || | | | | valinorsmic |
| || 12 || 0-2-11 || 1-5/4-12/7 || keenanismic || | | |- |
| || 13 || 0-4-11 || 1-11/7-12/7 || otonal || | | | | 2 |
| || 14 || 0-7-11 || 1-12/11-12/7 || utonal || | | | | 0-2-5 |
| || 15 || 0-9-11 || 1-11/8-12/7 || keenanismic || | | | | 1-5/4-7/4 |
| || 16 || 0-3-14 || 1-7/5-6/5 || otonal || | | | | otonal |
| || 17 || 0-5-14 || 1-7/4-6/5 || keenanismic || | | |- |
| || 18 || 0-7-14 || 1-11/10-6/5 || otonal || | | | | 3 |
| || 19 || 0-9-14 || 1-11/8-6/5 || keenanismic || | | | | 0-3-5 |
| || 20 || 0-11-14 || 1-12/7-6/5 || utonal || | | | | 1-7/5-7/4 |
| || 21 || 0-2-16 || 1-5/4-3/2 || otonal || | | | | utonal |
| || 22 || 0-5-16 || 1-7/4-3/2 || otonal || | | |- |
| || 23 || 0-7-16 || 1-12/11-3/2 || utonal || | | | | 4 |
| || 24 || 0-9-16 || 1-11/8-3/2 || otonal || | | | | 0-2-7 |
| || 25 || 0-11-16 || 1-12/7-3/2 || utonal || | | | | 1-5/4-11/10 |
| || 26 || 0-14-16 || 1-6/5-3/2 || utonal || | | | | valinorsmic |
| || 27 || 0-7-23 || 1-12/11-18/11 || otonal || | | |- |
| || 28 || 0-9-23 || 1-11/8-18/11 || biyatismic || | | | | 5 |
| || 29 || 0-14-23 || 1-6/5-18/11 || biyatismic || | | | | 0-3-7 |
| || 30 || 0-16-23 || 1-3/2-18/11 || utonal || | | | | 1-7/5-11/10 |
| || 31 || 0-4-27 || 1-11/7-9/7 || otonal || | | | | otonal |
| || 32 || 0-11-27 || 1-12/7-9/7 || otonal || | | |- |
| || 33 || 0-16-27 || 1-3/2-9/7 || utonal || | | | | 6 |
| || 34 || 0-23-27 || 1-18/11-9/7 || utonal || | | | | 0-4-7 |
| || 35 || 0-3-30 || 1-7/5-9/5 || otonal || | | | | 1-11/7-11/10 |
| || 36 || 0-7-30 || 1-11/10-9/5 || otonal || | | | | utonal |
| || 37 || 0-14-30 || 1-6/5-9/5 || otonal || | | |- |
| || 38 || 0-16-30 || 1-3/2-9/5 || utonal || | | | | 7 |
| || 39 || 0-23-30 || 1-18/11-9/5 || utonal || | | | | 0-5-7 |
| || 40 || 0-27-30 || 1-9/7-9/5 || utonal || | | | | 1-7/4-11/10 |
| || 41 || 0-2-32 || 1-5/4-9/8 || otonal || | | | | valinorsmic |
| || 42 || 0-5-32 || 1-7/4-9/8 || otonal || | | |- |
| || 43 || 0-9-32 || 1-11/8-9/8 || otonal || | | | | 8 |
| || 44 || 0-16-32 || 1-3/2-9/8 || ambitonal || | | | | 0-2-9 |
| || 45 || 0-23-32 || 1-18/11-9/8 || utonal || | | | | 1-5/4-11/8 |
| || 46 || 0-27-32 || 1-9/7-9/8 || utonal || | | | | otonal |
| || 47 || 0-30-32 || 1-9/5-9/8 || utonal || | | |- |
| | | | 9 |
| | | | 0-4-9 |
| | | | 1-11/7-11/8 |
| | | | utonal |
| | |- |
| | | | 10 |
| | | | 0-5-9 |
| | | | 1-7/4-11/8 |
| | | | otonal |
| | |- |
| | | | 11 |
| | | | 0-7-9 |
| | | | 1-11/10-11/8 |
| | | | utonal |
| | |- |
| | | | 12 |
| | | | 0-2-11 |
| | | | 1-5/4-12/7 |
| | | | keenanismic |
| | |- |
| | | | 13 |
| | | | 0-4-11 |
| | | | 1-11/7-12/7 |
| | | | otonal |
| | |- |
| | | | 14 |
| | | | 0-7-11 |
| | | | 1-12/11-12/7 |
| | | | utonal |
| | |- |
| | | | 15 |
| | | | 0-9-11 |
| | | | 1-11/8-12/7 |
| | | | keenanismic |
| | |- |
| | | | 16 |
| | | | 0-3-14 |
| | | | 1-7/5-6/5 |
| | | | otonal |
| | |- |
| | | | 17 |
| | | | 0-5-14 |
| | | | 1-7/4-6/5 |
| | | | keenanismic |
| | |- |
| | | | 18 |
| | | | 0-7-14 |
| | | | 1-11/10-6/5 |
| | | | otonal |
| | |- |
| | | | 19 |
| | | | 0-9-14 |
| | | | 1-11/8-6/5 |
| | | | keenanismic |
| | |- |
| | | | 20 |
| | | | 0-11-14 |
| | | | 1-12/7-6/5 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-2-16 |
| | | | 1-5/4-3/2 |
| | | | otonal |
| | |- |
| | | | 22 |
| | | | 0-5-16 |
| | | | 1-7/4-3/2 |
| | | | otonal |
| | |- |
| | | | 23 |
| | | | 0-7-16 |
| | | | 1-12/11-3/2 |
| | | | utonal |
| | |- |
| | | | 24 |
| | | | 0-9-16 |
| | | | 1-11/8-3/2 |
| | | | otonal |
| | |- |
| | | | 25 |
| | | | 0-11-16 |
| | | | 1-12/7-3/2 |
| | | | utonal |
| | |- |
| | | | 26 |
| | | | 0-14-16 |
| | | | 1-6/5-3/2 |
| | | | utonal |
| | |- |
| | | | 27 |
| | | | 0-7-23 |
| | | | 1-12/11-18/11 |
| | | | otonal |
| | |- |
| | | | 28 |
| | | | 0-9-23 |
| | | | 1-11/8-18/11 |
| | | | biyatismic |
| | |- |
| | | | 29 |
| | | | 0-14-23 |
| | | | 1-6/5-18/11 |
| | | | biyatismic |
| | |- |
| | | | 30 |
| | | | 0-16-23 |
| | | | 1-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 31 |
| | | | 0-4-27 |
| | | | 1-11/7-9/7 |
| | | | otonal |
| | |- |
| | | | 32 |
| | | | 0-11-27 |
| | | | 1-12/7-9/7 |
| | | | otonal |
| | |- |
| | | | 33 |
| | | | 0-16-27 |
| | | | 1-3/2-9/7 |
| | | | utonal |
| | |- |
| | | | 34 |
| | | | 0-23-27 |
| | | | 1-18/11-9/7 |
| | | | utonal |
| | |- |
| | | | 35 |
| | | | 0-3-30 |
| | | | 1-7/5-9/5 |
| | | | otonal |
| | |- |
| | | | 36 |
| | | | 0-7-30 |
| | | | 1-11/10-9/5 |
| | | | otonal |
| | |- |
| | | | 37 |
| | | | 0-14-30 |
| | | | 1-6/5-9/5 |
| | | | otonal |
| | |- |
| | | | 38 |
| | | | 0-16-30 |
| | | | 1-3/2-9/5 |
| | | | utonal |
| | |- |
| | | | 39 |
| | | | 0-23-30 |
| | | | 1-18/11-9/5 |
| | | | utonal |
| | |- |
| | | | 40 |
| | | | 0-27-30 |
| | | | 1-9/7-9/5 |
| | | | utonal |
| | |- |
| | | | 41 |
| | | | 0-2-32 |
| | | | 1-5/4-9/8 |
| | | | otonal |
| | |- |
| | | | 42 |
| | | | 0-5-32 |
| | | | 1-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 43 |
| | | | 0-9-32 |
| | | | 1-11/8-9/8 |
| | | | otonal |
| | |- |
| | | | 44 |
| | | | 0-16-32 |
| | | | 1-3/2-9/8 |
| | | | ambitonal |
| | |- |
| | | | 45 |
| | | | 0-23-32 |
| | | | 1-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 46 |
| | | | 0-27-32 |
| | | | 1-9/7-9/8 |
| | | | utonal |
| | |- |
| | | | 47 |
| | | | 0-30-32 |
| | | | 1-9/5-9/8 |
| | | | utonal |
| | |} |
|
| |
|
| =Tetrads= | | =Tetrads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-2-4-7 || 1-5/4-11/7-11/10 || valinorsmic || | | {| class="wikitable" |
| || 2 || 0-2-5-7 || 1-5/4-7/4-11/10 || valinorsmic || | | |- |
| || 3 || 0-3-5-7 || 1-7/5-7/4-11/10 || valinorsmic || | | | | Number |
| || 4 || 0-2-4-9 || 1-5/4-11/7-11/8 || valinorsmic || | | | | Chord |
| || 5 || 0-2-5-9 || 1-5/4-7/4-11/8 || otonal || | | | | Transversal |
| || 6 || 0-2-7-9 || 1-5/4-11/10-11/8 || valinorsmic || | | | | Type |
| || 7 || 0-4-7-9 || 1-11/7-11/10-11/8 || utonal || | | |- |
| || 8 || 0-5-7-9 || 1-7/4-11/10-11/8 || valinorsmic || | | | | 1 |
| || 9 || 0-2-4-11 || 1-5/4-11/7-12/7 || zeus || | | | | 0-2-4-7 |
| || 10 || 0-2-7-11 || 1-5/4-11/10-12/7 || zeus || | | | | 1-5/4-11/7-11/10 |
| || 11 || 0-4-7-11 || 1-11/7-11/10-12/7 || biyatismic || | | | | valinorsmic |
| || 12 || 0-2-9-11 || 1-5/4-11/8-12/7 || keenanismic || | | |- |
| || 13 || 0-4-9-11 || 1-11/7-11/8-12/7 || zeus || | | | | 2 |
| || 14 || 0-7-9-11 || 1-11/10-11/8-12/7 || zeus || | | | | 0-2-5-7 |
| || 15 || 0-3-5-14 || 1-7/5-7/4-6/5 || keenanismic || | | | | 1-5/4-7/4-11/10 |
| || 16 || 0-3-7-14 || 1-7/5-11/10-6/5 || otonal || | | | | valinorsmic |
| || 17 || 0-5-7-14 || 1-7/4-11/10-6/5 || zeus || | | |- |
| || 18 || 0-5-9-14 || 1-7/4-11/8-6/5 || keenanismic || | | | | 3 |
| || 19 || 0-7-9-14 || 1-11/10-11/8-6/5 || zeus || | | | | 0-3-5-7 |
| || 20 || 0-7-11-14 || 1-12/11-12/7-6/5 || utonal || | | | | 1-7/5-7/4-11/10 |
| || 21 || 0-9-11-14 || 1-11/8-12/7-6/5 || keenanismic || | | | | valinorsmic |
| || 22 || 0-2-5-16 || 1-5/4-7/4-3/2 || otonal || | | |- |
| || 23 || 0-2-7-16 || 1-5/4-11/10-3/2 || zeus || | | | | 4 |
| || 24 || 0-5-7-16 || 1-7/4-11/10-3/2 || zeus || | | | | 0-2-4-9 |
| || 25 || 0-2-9-16 || 1-5/4-11/8-3/2 || otonal || | | | | 1-5/4-11/7-11/8 |
| || 26 || 0-5-9-16 || 1-7/4-11/8-3/2 || otonal || | | | | valinorsmic |
| || 27 || 0-7-9-16 || 1-11/10-11/8-3/2 || biyatismic || | | |- |
| || 28 || 0-2-11-16 || 1-5/4-12/7-3/2 || keenanismic || | | | | 5 |
| || 29 || 0-7-11-16 || 1-12/11-12/7-3/2 || utonal || | | | | 0-2-5-9 |
| || 30 || 0-9-11-16 || 1-11/8-12/7-3/2 || zeus || | | | | 1-5/4-7/4-11/8 |
| || 31 || 0-5-14-16 || 1-7/4-6/5-3/2 || keenanismic || | | | | otonal |
| || 32 || 0-7-14-16 || 1-12/11-6/5-3/2 || utonal || | | |- |
| || 33 || 0-9-14-16 || 1-11/8-6/5-3/2 || zeus || | | | | 6 |
| || 34 || 0-11-14-16 || 1-12/7-6/5-3/2 || utonal || | | | | 0-2-7-9 |
| || 35 || 0-7-9-23 || 1-11/10-11/8-18/11 || biyatismic || | | | | 1-5/4-11/10-11/8 |
| || 36 || 0-7-14-23 || 1-11/10-6/5-18/11 || biyatismic || | | | | valinorsmic |
| || 37 || 0-9-14-23 || 1-11/8-6/5-18/11 || zeus || | | |- |
| || 38 || 0-7-16-23 || 1-12/11-3/2-18/11 || ambitonal || | | | | 7 |
| || 39 || 0-9-16-23 || 1-11/8-3/2-18/11 || biyatismic || | | | | 0-4-7-9 |
| || 40 || 0-14-16-23 || 1-6/5-3/2-18/11 || biyatismic || | | | | 1-11/7-11/10-11/8 |
| || 41 || 0-4-11-27 || 1-11/7-12/7-9/7 || otonal || | | | | utonal |
| || 42 || 0-11-16-27 || 1-12/7-3/2-9/7 || ambitonal || | | |- |
| || 43 || 0-16-23-27 || 1-3/2-18/11-9/7 || utonal || | | | | 8 |
| || 44 || 0-3-7-30 || 1-7/5-11/10-9/5 || otonal || | | | | 0-5-7-9 |
| || 45 || 0-3-14-30 || 1-7/5-6/5-9/5 || otonal || | | | | 1-7/4-11/10-11/8 |
| || 46 || 0-7-14-30 || 1-11/10-6/5-9/5 || otonal || | | | | valinorsmic |
| || 47 || 0-7-16-30 || 1-11/10-3/2-9/5 || biyatismic || | | |- |
| || 48 || 0-14-16-30 || 1-6/5-3/2-9/5 || ambitonal || | | | | 9 |
| || 49 || 0-7-23-30 || 1-11/10-18/11-9/5 || biyatismic || | | | | 0-2-4-11 |
| || 50 || 0-14-23-30 || 1-6/5-18/11-9/5 || biyatismic || | | | | 1-5/4-11/7-12/7 |
| || 51 || 0-16-23-30 || 1-3/2-18/11-9/5 || utonal || | | | | zeus |
| || 52 || 0-16-27-30 || 1-3/2-9/7-9/5 || utonal || | | |- |
| || 53 || 0-23-27-30 || 1-18/11-9/7-9/5 || utonal || | | | | 10 |
| || 54 || 0-2-5-32 || 1-5/4-7/4-9/8 || otonal || | | | | 0-2-7-11 |
| || 55 || 0-2-9-32 || 1-5/4-11/8-9/8 || otonal || | | | | 1-5/4-11/10-12/7 |
| || 56 || 0-5-9-32 || 1-7/4-11/8-9/8 || otonal || | | | | zeus |
| || 57 || 0-2-16-32 || 1-5/4-3/2-9/8 || otonal || | | |- |
| || 58 || 0-5-16-32 || 1-7/4-3/2-9/8 || otonal || | | | | 11 |
| || 59 || 0-9-16-32 || 1-11/8-3/2-9/8 || otonal || | | | | 0-4-7-11 |
| || 60 || 0-9-23-32 || 1-11/8-18/11-9/8 || biyatismic || | | | | 1-11/7-11/10-12/7 |
| || 61 || 0-16-23-32 || 1-3/2-18/11-9/8 || utonal || | | | | biyatismic |
| || 62 || 0-16-27-32 || 1-3/2-9/7-9/8 || utonal || | | |- |
| || 63 || 0-23-27-32 || 1-18/11-9/7-9/8 || utonal || | | | | 12 |
| || 64 || 0-16-30-32 || 1-3/2-9/5-9/8 || utonal || | | | | 0-2-9-11 |
| || 65 || 0-23-30-32 || 1-18/11-9/5-9/8 || utonal || | | | | 1-5/4-11/8-12/7 |
| || 66 || 0-27-30-32 || 1-9/7-9/5-9/8 || utonal || | | | | keenanismic |
| | |- |
| | | | 13 |
| | | | 0-4-9-11 |
| | | | 1-11/7-11/8-12/7 |
| | | | zeus |
| | |- |
| | | | 14 |
| | | | 0-7-9-11 |
| | | | 1-11/10-11/8-12/7 |
| | | | zeus |
| | |- |
| | | | 15 |
| | | | 0-3-5-14 |
| | | | 1-7/5-7/4-6/5 |
| | | | keenanismic |
| | |- |
| | | | 16 |
| | | | 0-3-7-14 |
| | | | 1-7/5-11/10-6/5 |
| | | | otonal |
| | |- |
| | | | 17 |
| | | | 0-5-7-14 |
| | | | 1-7/4-11/10-6/5 |
| | | | zeus |
| | |- |
| | | | 18 |
| | | | 0-5-9-14 |
| | | | 1-7/4-11/8-6/5 |
| | | | keenanismic |
| | |- |
| | | | 19 |
| | | | 0-7-9-14 |
| | | | 1-11/10-11/8-6/5 |
| | | | zeus |
| | |- |
| | | | 20 |
| | | | 0-7-11-14 |
| | | | 1-12/11-12/7-6/5 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-9-11-14 |
| | | | 1-11/8-12/7-6/5 |
| | | | keenanismic |
| | |- |
| | | | 22 |
| | | | 0-2-5-16 |
| | | | 1-5/4-7/4-3/2 |
| | | | otonal |
| | |- |
| | | | 23 |
| | | | 0-2-7-16 |
| | | | 1-5/4-11/10-3/2 |
| | | | zeus |
| | |- |
| | | | 24 |
| | | | 0-5-7-16 |
| | | | 1-7/4-11/10-3/2 |
| | | | zeus |
| | |- |
| | | | 25 |
| | | | 0-2-9-16 |
| | | | 1-5/4-11/8-3/2 |
| | | | otonal |
| | |- |
| | | | 26 |
| | | | 0-5-9-16 |
| | | | 1-7/4-11/8-3/2 |
| | | | otonal |
| | |- |
| | | | 27 |
| | | | 0-7-9-16 |
| | | | 1-11/10-11/8-3/2 |
| | | | biyatismic |
| | |- |
| | | | 28 |
| | | | 0-2-11-16 |
| | | | 1-5/4-12/7-3/2 |
| | | | keenanismic |
| | |- |
| | | | 29 |
| | | | 0-7-11-16 |
| | | | 1-12/11-12/7-3/2 |
| | | | utonal |
| | |- |
| | | | 30 |
| | | | 0-9-11-16 |
| | | | 1-11/8-12/7-3/2 |
| | | | zeus |
| | |- |
| | | | 31 |
| | | | 0-5-14-16 |
| | | | 1-7/4-6/5-3/2 |
| | | | keenanismic |
| | |- |
| | | | 32 |
| | | | 0-7-14-16 |
| | | | 1-12/11-6/5-3/2 |
| | | | utonal |
| | |- |
| | | | 33 |
| | | | 0-9-14-16 |
| | | | 1-11/8-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 34 |
| | | | 0-11-14-16 |
| | | | 1-12/7-6/5-3/2 |
| | | | utonal |
| | |- |
| | | | 35 |
| | | | 0-7-9-23 |
| | | | 1-11/10-11/8-18/11 |
| | | | biyatismic |
| | |- |
| | | | 36 |
| | | | 0-7-14-23 |
| | | | 1-11/10-6/5-18/11 |
| | | | biyatismic |
| | |- |
| | | | 37 |
| | | | 0-9-14-23 |
| | | | 1-11/8-6/5-18/11 |
| | | | zeus |
| | |- |
| | | | 38 |
| | | | 0-7-16-23 |
| | | | 1-12/11-3/2-18/11 |
| | | | ambitonal |
| | |- |
| | | | 39 |
| | | | 0-9-16-23 |
| | | | 1-11/8-3/2-18/11 |
| | | | biyatismic |
| | |- |
| | | | 40 |
| | | | 0-14-16-23 |
| | | | 1-6/5-3/2-18/11 |
| | | | biyatismic |
| | |- |
| | | | 41 |
| | | | 0-4-11-27 |
| | | | 1-11/7-12/7-9/7 |
| | | | otonal |
| | |- |
| | | | 42 |
| | | | 0-11-16-27 |
| | | | 1-12/7-3/2-9/7 |
| | | | ambitonal |
| | |- |
| | | | 43 |
| | | | 0-16-23-27 |
| | | | 1-3/2-18/11-9/7 |
| | | | utonal |
| | |- |
| | | | 44 |
| | | | 0-3-7-30 |
| | | | 1-7/5-11/10-9/5 |
| | | | otonal |
| | |- |
| | | | 45 |
| | | | 0-3-14-30 |
| | | | 1-7/5-6/5-9/5 |
| | | | otonal |
| | |- |
| | | | 46 |
| | | | 0-7-14-30 |
| | | | 1-11/10-6/5-9/5 |
| | | | otonal |
| | |- |
| | | | 47 |
| | | | 0-7-16-30 |
| | | | 1-11/10-3/2-9/5 |
| | | | biyatismic |
| | |- |
| | | | 48 |
| | | | 0-14-16-30 |
| | | | 1-6/5-3/2-9/5 |
| | | | ambitonal |
| | |- |
| | | | 49 |
| | | | 0-7-23-30 |
| | | | 1-11/10-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 50 |
| | | | 0-14-23-30 |
| | | | 1-6/5-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 51 |
| | | | 0-16-23-30 |
| | | | 1-3/2-18/11-9/5 |
| | | | utonal |
| | |- |
| | | | 52 |
| | | | 0-16-27-30 |
| | | | 1-3/2-9/7-9/5 |
| | | | utonal |
| | |- |
| | | | 53 |
| | | | 0-23-27-30 |
| | | | 1-18/11-9/7-9/5 |
| | | | utonal |
| | |- |
| | | | 54 |
| | | | 0-2-5-32 |
| | | | 1-5/4-7/4-9/8 |
| | | | otonal |
| | |- |
| | | | 55 |
| | | | 0-2-9-32 |
| | | | 1-5/4-11/8-9/8 |
| | | | otonal |
| | |- |
| | | | 56 |
| | | | 0-5-9-32 |
| | | | 1-7/4-11/8-9/8 |
| | | | otonal |
| | |- |
| | | | 57 |
| | | | 0-2-16-32 |
| | | | 1-5/4-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 58 |
| | | | 0-5-16-32 |
| | | | 1-7/4-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 59 |
| | | | 0-9-16-32 |
| | | | 1-11/8-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 60 |
| | | | 0-9-23-32 |
| | | | 1-11/8-18/11-9/8 |
| | | | biyatismic |
| | |- |
| | | | 61 |
| | | | 0-16-23-32 |
| | | | 1-3/2-18/11-9/8 |
| | | | utonal |
| | |- |
| | | | 62 |
| | | | 0-16-27-32 |
| | | | 1-3/2-9/7-9/8 |
| | | | utonal |
| | |- |
| | | | 63 |
| | | | 0-23-27-32 |
| | | | 1-18/11-9/7-9/8 |
| | | | utonal |
| | |- |
| | | | 64 |
| | | | 0-16-30-32 |
| | | | 1-3/2-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 65 |
| | | | 0-23-30-32 |
| | | | 1-18/11-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 66 |
| | | | 0-27-30-32 |
| | | | 1-9/7-9/5-9/8 |
| | | | utonal |
| | |} |
|
| |
|
| =Pentads= | | =Pentads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-2-4-7-9 || 1-5/4-11/7-11/10-11/8 || valinorsmic || | | {| class="wikitable" |
| || 2 || 0-2-5-7-9 || 1-5/4-7/4-11/10-11/8 || valinorsmic || | | |- |
| || 3 || 0-2-4-7-11 || 1-5/4-11/7-11/10-12/7 || zeus || | | | | Number |
| || 4 || 0-2-4-9-11 || 1-5/4-11/7-11/8-12/7 || zeus || | | | | Chord |
| || 5 || 0-2-7-9-11 || 1-5/4-11/10-11/8-12/7 || zeus || | | | | Transversal |
| || 6 || 0-4-7-9-11 || 1-11/7-11/10-11/8-12/7 || zeus || | | | | Type |
| || 7 || 0-3-5-7-14 || 1-7/5-7/4-11/10-6/5 || zeus || | | |- |
| || 8 || 0-5-7-9-14 || 1-7/4-11/10-11/8-6/5 || zeus || | | | | 1 |
| || 9 || 0-7-9-11-14 || 1-11/10-11/8-12/7-6/5 || zeus || | | | | 0-2-4-7-9 |
| || 10 || 0-2-5-7-16 || 1-5/4-7/4-11/10-3/2 || zeus || | | | | 1-5/4-11/7-11/10-11/8 |
| || 11 || 0-2-5-9-16 || 1-5/4-7/4-11/8-3/2 || otonal || | | | | valinorsmic |
| || 12 || 0-2-7-9-16 || 1-5/4-11/10-11/8-3/2 || zeus || | | |- |
| || 13 || 0-5-7-9-16 || 1-7/4-11/10-11/8-3/2 || zeus || | | | | 2 |
| || 14 || 0-2-7-11-16 || 1-5/4-11/10-12/7-3/2 || zeus || | | | | 0-2-5-7-9 |
| || 15 || 0-2-9-11-16 || 1-5/4-11/8-12/7-3/2 || zeus || | | | | 1-5/4-7/4-11/10-11/8 |
| || 16 || 0-7-9-11-16 || 1-11/10-11/8-12/7-3/2 || zeus || | | | | valinorsmic |
| || 17 || 0-5-7-14-16 || 1-7/4-11/10-6/5-3/2 || zeus || | | |- |
| || 18 || 0-5-9-14-16 || 1-7/4-11/8-6/5-3/2 || zeus || | | | | 3 |
| || 19 || 0-7-9-14-16 || 1-11/10-11/8-6/5-3/2 || zeus || | | | | 0-2-4-7-11 |
| || 20 || 0-7-11-14-16 || 1-12/11-12/7-6/5-3/2 || utonal || | | | | 1-5/4-11/7-11/10-12/7 |
| || 21 || 0-9-11-14-16 || 1-11/8-12/7-6/5-3/2 || zeus || | | | | zeus |
| || 22 || 0-7-9-14-23 || 1-11/10-11/8-6/5-18/11 || zeus || | | |- |
| || 23 || 0-7-9-16-23 || 1-11/10-11/8-3/2-18/11 || biyatismic || | | | | 4 |
| || 24 || 0-7-14-16-23 || 1-11/10-6/5-3/2-18/11 || biyatismic || | | | | 0-2-4-9-11 |
| || 25 || 0-9-14-16-23 || 1-11/8-6/5-3/2-18/11 || zeus || | | | | 1-5/4-11/7-11/8-12/7 |
| || 26 || 0-3-7-14-30 || 1-7/5-11/10-6/5-9/5 || otonal || | | | | zeus |
| || 27 || 0-7-14-16-30 || 1-11/10-6/5-3/2-9/5 || biyatismic || | | |- |
| || 28 || 0-7-14-23-30 || 1-11/10-6/5-18/11-9/5 || biyatismic || | | | | 5 |
| || 29 || 0-7-16-23-30 || 1-11/10-3/2-18/11-9/5 || biyatismic || | | | | 0-2-7-9-11 |
| || 30 || 0-14-16-23-30 || 1-6/5-3/2-18/11-9/5 || biyatismic || | | | | 1-5/4-11/10-11/8-12/7 |
| || 31 || 0-16-23-27-30 || 1-3/2-18/11-9/7-9/5 || utonal || | | | | zeus |
| || 32 || 0-2-5-9-32 || 1-5/4-7/4-11/8-9/8 || otonal || | | |- |
| || 33 || 0-2-5-16-32 || 1-5/4-7/4-3/2-9/8 || otonal || | | | | 6 |
| || 34 || 0-2-9-16-32 || 1-5/4-11/8-3/2-9/8 || otonal || | | | | 0-4-7-9-11 |
| || 35 || 0-5-9-16-32 || 1-7/4-11/8-3/2-9/8 || otonal || | | | | 1-11/7-11/10-11/8-12/7 |
| || 36 || 0-9-16-23-32 || 1-11/8-3/2-18/11-9/8 || biyatismic || | | | | zeus |
| || 37 || 0-16-23-27-32 || 1-3/2-18/11-9/7-9/8 || utonal || | | |- |
| || 38 || 0-16-23-30-32 || 1-3/2-18/11-9/5-9/8 || utonal || | | | | 7 |
| || 39 || 0-16-27-30-32 || 1-3/2-9/7-9/5-9/8 || utonal || | | | | 0-3-5-7-14 |
| || 40 || 0-23-27-30-32 || 1-18/11-9/7-9/5-9/8 || utonal || | | | | 1-7/5-7/4-11/10-6/5 |
| | | | zeus |
| | |- |
| | | | 8 |
| | | | 0-5-7-9-14 |
| | | | 1-7/4-11/10-11/8-6/5 |
| | | | zeus |
| | |- |
| | | | 9 |
| | | | 0-7-9-11-14 |
| | | | 1-11/10-11/8-12/7-6/5 |
| | | | zeus |
| | |- |
| | | | 10 |
| | | | 0-2-5-7-16 |
| | | | 1-5/4-7/4-11/10-3/2 |
| | | | zeus |
| | |- |
| | | | 11 |
| | | | 0-2-5-9-16 |
| | | | 1-5/4-7/4-11/8-3/2 |
| | | | otonal |
| | |- |
| | | | 12 |
| | | | 0-2-7-9-16 |
| | | | 1-5/4-11/10-11/8-3/2 |
| | | | zeus |
| | |- |
| | | | 13 |
| | | | 0-5-7-9-16 |
| | | | 1-7/4-11/10-11/8-3/2 |
| | | | zeus |
| | |- |
| | | | 14 |
| | | | 0-2-7-11-16 |
| | | | 1-5/4-11/10-12/7-3/2 |
| | | | zeus |
| | |- |
| | | | 15 |
| | | | 0-2-9-11-16 |
| | | | 1-5/4-11/8-12/7-3/2 |
| | | | zeus |
| | |- |
| | | | 16 |
| | | | 0-7-9-11-16 |
| | | | 1-11/10-11/8-12/7-3/2 |
| | | | zeus |
| | |- |
| | | | 17 |
| | | | 0-5-7-14-16 |
| | | | 1-7/4-11/10-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 18 |
| | | | 0-5-9-14-16 |
| | | | 1-7/4-11/8-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 19 |
| | | | 0-7-9-14-16 |
| | | | 1-11/10-11/8-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 20 |
| | | | 0-7-11-14-16 |
| | | | 1-12/11-12/7-6/5-3/2 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-9-11-14-16 |
| | | | 1-11/8-12/7-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 22 |
| | | | 0-7-9-14-23 |
| | | | 1-11/10-11/8-6/5-18/11 |
| | | | zeus |
| | |- |
| | | | 23 |
| | | | 0-7-9-16-23 |
| | | | 1-11/10-11/8-3/2-18/11 |
| | | | biyatismic |
| | |- |
| | | | 24 |
| | | | 0-7-14-16-23 |
| | | | 1-11/10-6/5-3/2-18/11 |
| | | | biyatismic |
| | |- |
| | | | 25 |
| | | | 0-9-14-16-23 |
| | | | 1-11/8-6/5-3/2-18/11 |
| | | | zeus |
| | |- |
| | | | 26 |
| | | | 0-3-7-14-30 |
| | | | 1-7/5-11/10-6/5-9/5 |
| | | | otonal |
| | |- |
| | | | 27 |
| | | | 0-7-14-16-30 |
| | | | 1-11/10-6/5-3/2-9/5 |
| | | | biyatismic |
| | |- |
| | | | 28 |
| | | | 0-7-14-23-30 |
| | | | 1-11/10-6/5-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 29 |
| | | | 0-7-16-23-30 |
| | | | 1-11/10-3/2-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 30 |
| | | | 0-14-16-23-30 |
| | | | 1-6/5-3/2-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 31 |
| | | | 0-16-23-27-30 |
| | | | 1-3/2-18/11-9/7-9/5 |
| | | | utonal |
| | |- |
| | | | 32 |
| | | | 0-2-5-9-32 |
| | | | 1-5/4-7/4-11/8-9/8 |
| | | | otonal |
| | |- |
| | | | 33 |
| | | | 0-2-5-16-32 |
| | | | 1-5/4-7/4-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 34 |
| | | | 0-2-9-16-32 |
| | | | 1-5/4-11/8-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 35 |
| | | | 0-5-9-16-32 |
| | | | 1-7/4-11/8-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 36 |
| | | | 0-9-16-23-32 |
| | | | 1-11/8-3/2-18/11-9/8 |
| | | | biyatismic |
| | |- |
| | | | 37 |
| | | | 0-16-23-27-32 |
| | | | 1-3/2-18/11-9/7-9/8 |
| | | | utonal |
| | |- |
| | | | 38 |
| | | | 0-16-23-30-32 |
| | | | 1-3/2-18/11-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 39 |
| | | | 0-16-27-30-32 |
| | | | 1-3/2-9/7-9/5-9/8 |
| | | | utonal |
| | |- |
| | | | 40 |
| | | | 0-23-27-30-32 |
| | | | 1-18/11-9/7-9/5-9/8 |
| | | | utonal |
| | |} |
|
| |
|
| =Hexads= | | =Hexads= |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-2-4-7-9-11 || 1-5/4-11/7-11/10-11/8-12/7 || zeus ||
| |
| || 2 || 0-2-5-7-9-16 || 1-5/4-7/4-11/10-11/8-3/2 || zeus ||
| |
| || 3 || 0-2-7-9-11-16 || 1-5/4-11/10-11/8-12/7-3/2 || zeus ||
| |
| || 4 || 0-5-7-9-14-16 || 1-7/4-11/10-11/8-6/5-3/2 || zeus ||
| |
| || 5 || 0-7-9-11-14-16 || 1-11/10-11/8-12/7-6/5-3/2 || zeus ||
| |
| || 6 || 0-7-9-14-16-23 || 1-11/10-11/8-6/5-3/2-18/11 || zeus ||
| |
| || 7 || 0-7-14-16-23-30 || 1-11/10-6/5-3/2-18/11-9/5 || biyatismic ||
| |
| || 8 || 0-2-5-9-16-32 || 1-5/4-7/4-11/8-3/2-9/8 || otonal ||
| |
| || 9 || 0-16-23-27-30-32 || 1-3/2-18/11-9/7-9/5-9/8 || utonal ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of hemiwur</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwur temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 werckismic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus.<br />
| |
| <br />
| |
| Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-4<br />
| |
| </td>
| |
| <td>1-5/4-11/7<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-2-5<br />
| |
| </td>
| |
| <td>1-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-3-5<br />
| |
| </td>
| |
| <td>1-7/5-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-7<br />
| |
| </td>
| |
| <td>1-5/4-11/10<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-7<br />
| |
| </td>
| |
| <td>1-7/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-4-7<br />
| |
| </td>
| |
| <td>1-11/7-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-5-7<br />
| |
| </td>
| |
| <td>1-7/4-11/10<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-2-9<br />
| |
| </td>
| |
| <td>1-5/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-4-9<br />
| |
| </td>
| |
| <td>1-11/7-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-5-9<br />
| |
| </td>
| |
| <td>1-7/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-7-9<br />
| |
| </td>
| |
| <td>1-11/10-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-2-11<br />
| |
| </td>
| |
| <td>1-5/4-12/7<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-11<br />
| |
| </td>
| |
| <td>1-11/7-12/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-7-11<br />
| |
| </td>
| |
| <td>1-12/11-12/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-9-11<br />
| |
| </td>
| |
| <td>1-11/8-12/7<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-3-14<br />
| |
| </td>
| |
| <td>1-7/5-6/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-5-14<br />
| |
| </td>
| |
| <td>1-7/4-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-7-14<br />
| |
| </td>
| |
| <td>1-11/10-6/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-9-14<br />
| |
| </td>
| |
| <td>1-11/8-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-11-14<br />
| |
| </td>
| |
| <td>1-12/7-6/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-2-16<br />
| |
| </td>
| |
| <td>1-5/4-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-5-16<br />
| |
| </td>
| |
| <td>1-7/4-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-7-16<br />
| |
| </td>
| |
| <td>1-12/11-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-9-16<br />
| |
| </td>
| |
| <td>1-11/8-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-11-16<br />
| |
| </td>
| |
| <td>1-12/7-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-14-16<br />
| |
| </td>
| |
| <td>1-6/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-7-23<br />
| |
| </td>
| |
| <td>1-12/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-9-23<br />
| |
| </td>
| |
| <td>1-11/8-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-14-23<br />
| |
| </td>
| |
| <td>1-6/5-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-16-23<br />
| |
| </td>
| |
| <td>1-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-4-27<br />
| |
| </td>
| |
| <td>1-11/7-9/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-11-27<br />
| |
| </td>
| |
| <td>1-12/7-9/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-16-27<br />
| |
| </td>
| |
| <td>1-3/2-9/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-23-27<br />
| |
| </td>
| |
| <td>1-18/11-9/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-3-30<br />
| |
| </td>
| |
| <td>1-7/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-7-30<br />
| |
| </td>
| |
| <td>1-11/10-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-14-30<br />
| |
| </td>
| |
| <td>1-6/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-16-30<br />
| |
| </td>
| |
| <td>1-3/2-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-23-30<br />
| |
| </td>
| |
| <td>1-18/11-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-27-30<br />
| |
| </td>
| |
| <td>1-9/7-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-2-32<br />
| |
| </td>
| |
| <td>1-5/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-5-32<br />
| |
| </td>
| |
| <td>1-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-9-32<br />
| |
| </td>
| |
| <td>1-11/8-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-16-32<br />
| |
| </td>
| |
| <td>1-3/2-9/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-23-32<br />
| |
| </td>
| |
| <td>1-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-27-32<br />
| |
| </td>
| |
| <td>1-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-30-32<br />
| |
| </td>
| |
| <td>1-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-4-7<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/10<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-2-5-7<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/10<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-3-5-7<br />
| |
| </td>
| |
| <td>1-7/5-7/4-11/10<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-4-9<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/8<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-5-9<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-2-7-9<br />
| |
| </td>
| |
| <td>1-5/4-11/10-11/8<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-4-7-9<br />
| |
| </td>
| |
| <td>1-11/7-11/10-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-5-7-9<br />
| |
| </td>
| |
| <td>1-7/4-11/10-11/8<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-4-11<br />
| |
| </td>
| |
| <td>1-5/4-11/7-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-2-7-11<br />
| |
| </td>
| |
| <td>1-5/4-11/10-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-4-7-11<br />
| |
| </td>
| |
| <td>1-11/7-11/10-12/7<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-2-9-11<br />
| |
| </td>
| |
| <td>1-5/4-11/8-12/7<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-9-11<br />
| |
| </td>
| |
| <td>1-11/7-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-7-9-11<br />
| |
| </td>
| |
| <td>1-11/10-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-3-5-14<br />
| |
| </td>
| |
| <td>1-7/5-7/4-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-3-7-14<br />
| |
| </td>
| |
| <td>1-7/5-11/10-6/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-5-7-14<br />
| |
| </td>
| |
| <td>1-7/4-11/10-6/5<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-5-9-14<br />
| |
| </td>
| |
| <td>1-7/4-11/8-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-7-9-14<br />
| |
| </td>
| |
| <td>1-11/10-11/8-6/5<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-7-11-14<br />
| |
| </td>
| |
| <td>1-12/11-12/7-6/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-9-11-14<br />
| |
| </td>
| |
| <td>1-11/8-12/7-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-2-5-16<br />
| |
| </td>
| |
| <td>1-5/4-7/4-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-2-7-16<br />
| |
| </td>
| |
| <td>1-5/4-11/10-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-5-7-16<br />
| |
| </td>
| |
| <td>1-7/4-11/10-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-2-9-16<br />
| |
| </td>
| |
| <td>1-5/4-11/8-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-5-9-16<br />
| |
| </td>
| |
| <td>1-7/4-11/8-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-7-9-16<br />
| |
| </td>
| |
| <td>1-11/10-11/8-3/2<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-2-11-16<br />
| |
| </td>
| |
| <td>1-5/4-12/7-3/2<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-7-11-16<br />
| |
| </td>
| |
| <td>1-12/11-12/7-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-9-11-16<br />
| |
| </td>
| |
| <td>1-11/8-12/7-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-5-14-16<br />
| |
| </td>
| |
| <td>1-7/4-6/5-3/2<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-7-14-16<br />
| |
| </td>
| |
| <td>1-12/11-6/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-9-14-16<br />
| |
| </td>
| |
| <td>1-11/8-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-11-14-16<br />
| |
| </td>
| |
| <td>1-12/7-6/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-7-9-23<br />
| |
| </td>
| |
| <td>1-11/10-11/8-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-7-14-23<br />
| |
| </td>
| |
| <td>1-11/10-6/5-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-9-14-23<br />
| |
| </td>
| |
| <td>1-11/8-6/5-18/11<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-7-16-23<br />
| |
| </td>
| |
| <td>1-12/11-3/2-18/11<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-9-16-23<br />
| |
| </td>
| |
| <td>1-11/8-3/2-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-14-16-23<br />
| |
| </td>
| |
| <td>1-6/5-3/2-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-4-11-27<br />
| |
| </td>
| |
| <td>1-11/7-12/7-9/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-11-16-27<br />
| |
| </td>
| |
| <td>1-12/7-3/2-9/7<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-16-23-27<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-3-7-30<br />
| |
| </td>
| |
| <td>1-7/5-11/10-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-3-14-30<br />
| |
| </td>
| |
| <td>1-7/5-6/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-7-14-30<br />
| |
| </td>
| |
| <td>1-11/10-6/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-7-16-30<br />
| |
| </td>
| |
| <td>1-11/10-3/2-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-14-16-30<br />
| |
| </td>
| |
| <td>1-6/5-3/2-9/5<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-7-23-30<br />
| |
| </td>
| |
| <td>1-11/10-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-14-23-30<br />
| |
| </td>
| |
| <td>1-6/5-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-16-23-30<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-16-27-30<br />
| |
| </td>
| |
| <td>1-3/2-9/7-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-23-27-30<br />
| |
| </td>
| |
| <td>1-18/11-9/7-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-2-5-32<br />
| |
| </td>
| |
| <td>1-5/4-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-2-9-32<br />
| |
| </td>
| |
| <td>1-5/4-11/8-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-5-9-32<br />
| |
| </td>
| |
| <td>1-7/4-11/8-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-2-16-32<br />
| |
| </td>
| |
| <td>1-5/4-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-5-16-32<br />
| |
| </td>
| |
| <td>1-7/4-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-9-16-32<br />
| |
| </td>
| |
| <td>1-11/8-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-9-23-32<br />
| |
| </td>
| |
| <td>1-11/8-18/11-9/8<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-16-23-32<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-16-27-32<br />
| |
| </td>
| |
| <td>1-3/2-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-23-27-32<br />
| |
| </td>
| |
| <td>1-18/11-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>0-16-30-32<br />
| |
| </td>
| |
| <td>1-3/2-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>0-23-30-32<br />
| |
| </td>
| |
| <td>1-18/11-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>0-27-30-32<br />
| |
| </td>
| |
| <td>1-9/7-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-4-7-9<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/10-11/8<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-2-5-7-9<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/10-11/8<br />
| |
| </td>
| |
| <td>valinorsmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-4-7-11<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/10-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-4-9-11<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-7-9-11<br />
| |
| </td>
| |
| <td>1-5/4-11/10-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-4-7-9-11<br />
| |
| </td>
| |
| <td>1-11/7-11/10-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-3-5-7-14<br />
| |
| </td>
| |
| <td>1-7/5-7/4-11/10-6/5<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-5-7-9-14<br />
| |
| </td>
| |
| <td>1-7/4-11/10-11/8-6/5<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-7-9-11-14<br />
| |
| </td>
| |
| <td>1-11/10-11/8-12/7-6/5<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-2-5-7-16<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/10-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-2-5-9-16<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/8-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-2-7-9-16<br />
| |
| </td>
| |
| <td>1-5/4-11/10-11/8-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-5-7-9-16<br />
| |
| </td>
| |
| <td>1-7/4-11/10-11/8-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-2-7-11-16<br />
| |
| </td>
| |
| <td>1-5/4-11/10-12/7-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-2-9-11-16<br />
| |
| </td>
| |
| <td>1-5/4-11/8-12/7-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-7-9-11-16<br />
| |
| </td>
| |
| <td>1-11/10-11/8-12/7-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-5-7-14-16<br />
| |
| </td>
| |
| <td>1-7/4-11/10-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-5-9-14-16<br />
| |
| </td>
| |
| <td>1-7/4-11/8-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-7-9-14-16<br />
| |
| </td>
| |
| <td>1-11/10-11/8-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-7-11-14-16<br />
| |
| </td>
| |
| <td>1-12/11-12/7-6/5-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-9-11-14-16<br />
| |
| </td>
| |
| <td>1-11/8-12/7-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-7-9-14-23<br />
| |
| </td>
| |
| <td>1-11/10-11/8-6/5-18/11<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-7-9-16-23<br />
| |
| </td>
| |
| <td>1-11/10-11/8-3/2-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-7-14-16-23<br />
| |
| </td>
| |
| <td>1-11/10-6/5-3/2-18/11<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-9-14-16-23<br />
| |
| </td>
| |
| <td>1-11/8-6/5-3/2-18/11<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-3-7-14-30<br />
| |
| </td>
| |
| <td>1-7/5-11/10-6/5-9/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-7-14-16-30<br />
| |
| </td>
| |
| <td>1-11/10-6/5-3/2-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-7-14-23-30<br />
| |
| </td>
| |
| <td>1-11/10-6/5-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-7-16-23-30<br />
| |
| </td>
| |
| <td>1-11/10-3/2-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-14-16-23-30<br />
| |
| </td>
| |
| <td>1-6/5-3/2-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-16-23-27-30<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/7-9/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-2-5-9-32<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/8-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-2-5-16-32<br />
| |
| </td>
| |
| <td>1-5/4-7/4-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-2-9-16-32<br />
| |
| </td>
| |
| <td>1-5/4-11/8-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-5-9-16-32<br />
| |
| </td>
| |
| <td>1-7/4-11/8-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-9-16-23-32<br />
| |
| </td>
| |
| <td>1-11/8-3/2-18/11-9/8<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-16-23-27-32<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-16-23-30-32<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-16-27-30-32<br />
| |
| </td>
| |
| <td>1-3/2-9/7-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-23-27-30-32<br />
| |
| </td>
| |
| <td>1-18/11-9/7-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-4-7-9-11<br />
| |
| </td>
| |
| <td>1-5/4-11/7-11/10-11/8-12/7<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-2-5-7-9-16<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/10-11/8-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-7-9-11-16<br />
| |
| </td>
| |
| <td>1-5/4-11/10-11/8-12/7-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-5-7-9-14-16<br />
| |
| </td>
| |
| <td>1-7/4-11/10-11/8-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-7-9-11-14-16<br />
| |
| </td>
| |
| <td>1-11/10-11/8-12/7-6/5-3/2<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-7-9-14-16-23<br />
| |
| </td>
| |
| <td>1-11/10-11/8-6/5-3/2-18/11<br />
| |
| </td>
| |
| <td>zeus<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-7-14-16-23-30<br />
| |
| </td>
| |
| <td>1-11/10-6/5-3/2-18/11-9/5<br />
| |
| </td>
| |
| <td>biyatismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-2-5-9-16-32<br />
| |
| </td>
| |
| <td>1-5/4-7/4-11/8-3/2-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-16-23-27-30-32<br />
| |
| </td>
| |
| <td>1-3/2-18/11-9/7-9/5-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | {| class="wikitable" |
| | |- |
| | | | Number |
| | | | Chord |
| | | | Transversal |
| | | | Type |
| | |- |
| | | | 1 |
| | | | 0-2-4-7-9-11 |
| | | | 1-5/4-11/7-11/10-11/8-12/7 |
| | | | zeus |
| | |- |
| | | | 2 |
| | | | 0-2-5-7-9-16 |
| | | | 1-5/4-7/4-11/10-11/8-3/2 |
| | | | zeus |
| | |- |
| | | | 3 |
| | | | 0-2-7-9-11-16 |
| | | | 1-5/4-11/10-11/8-12/7-3/2 |
| | | | zeus |
| | |- |
| | | | 4 |
| | | | 0-5-7-9-14-16 |
| | | | 1-7/4-11/10-11/8-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 5 |
| | | | 0-7-9-11-14-16 |
| | | | 1-11/10-11/8-12/7-6/5-3/2 |
| | | | zeus |
| | |- |
| | | | 6 |
| | | | 0-7-9-14-16-23 |
| | | | 1-11/10-11/8-6/5-3/2-18/11 |
| | | | zeus |
| | |- |
| | | | 7 |
| | | | 0-7-14-16-23-30 |
| | | | 1-11/10-6/5-3/2-18/11-9/5 |
| | | | biyatismic |
| | |- |
| | | | 8 |
| | | | 0-2-5-9-16-32 |
| | | | 1-5/4-7/4-11/8-3/2-9/8 |
| | | | otonal |
| | |- |
| | | | 9 |
| | | | 0-16-23-27-30-32 |
| | | | 1-3/2-18/11-9/7-9/5-9/8 |
| | | | utonal |
| | |} |
| | [[Category:Lists of chords]] |
| | [[Category:Dyadic chords]] |
| | [[Category:11-limit]] |
| | [[Category:Hemiwur]] |