81edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 80edo81edo82edo →
Prime factorization 34
Step size 14.8148¢
Fifth 47\81 (696.296¢)
Semitones (A1:m2) 5:8 (74.07¢ : 118.5¢)
Dual sharp fifth 48\81 (711.111¢) (→16\27)
Dual flat fifth 47\81 (696.296¢)
Dual major 2nd 14\81 (207.407¢)
Consistency limit 7
Distinct consistency limit 7

81 equal divisions of the octave (abbreviated 81edo or 81ed2), also called 81-tone equal temperament (81tet) or 81 equal temperament (81et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 81 equal parts of about 14.8 ¢ each. Each step represents a frequency ratio of 21/81, or the 81st root of 2.

Theory

By Tom Winspear, utilizing the Accidents shown below. Left: Chain of 4ths/5ths , Right: Chromatic view. Black font represents the '6 accidentals deep' notation that covers the chromatic scale with enharmonics only across EF & BC. White text displays deep enharmonics in the ambiguous infrared & ultraviolet area of the colour notation.

81edo is notable as a tuning for meantone and related temperaments and is the optimal patent val for a number of them. In particular it is the optimal patent val for 5-limit meantone, 7-limit meantone, 11-limit meanpop, 13-limit meanpop, and the rank three temperament erato. The electronic music pioneer Daphne Oram was interested in 81edo. As a step in the Golden meantone series of EDOs, 81 EDO marks the point at which the series ceases to display audible changes to meantone temperament, and is also the EDO with the lowest average and most evenly spread Just-error across the scale (though 31 EDO does have the best harmonic 7th).

Besides meantone, 81edo is a tuning for the cobalt temperament, since it contains 27 as a divisor. It also tunes the unnamed 15 & 51 temperament which divides the octave into 3 equal parts, and is a member of the augmented-cloudy equivalence continuum. 81bd val is a tuning for the septimal porcupine temperament.

In the higher limits, it is a strong tuning for the 2.5.17.19 subgroup, and also can be used to map 19/17 to the meantone major second resulting from stacking of two patent val fifths (13\81).

Odd harmonics

Approximation of odd harmonics in 81edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) -5.66 -1.13 -5.86 +3.50 -3.17 +3.92 -6.79 -1.25 -1.22 +3.29 -6.05
relative (%) -38 -8 -40 +24 -21 +26 -46 -8 -8 +22 -41
Steps
(reduced)
128
(47)
188
(26)
227
(65)
257
(14)
280
(37)
300
(57)
316
(73)
331
(7)
344
(20)
356
(32)
366
(42)

Subsets and supersets

Since 81 is equal to 34, a perfect power of 3, 81edo contains subset edos 1, 3, 9, 27.

Intervals

Steps Cents Ups and downs notation
(dual flat fifth 47\81)
Ups and downs notation
(dual sharp fifth 48\81)
Approximate ratios
0 0 D D 1/1
1 14.8148 ↑D, ↓↓E♭♭ ↑D, ↓↓E♭
2 29.6296 ↑↑D, ↓E♭♭ ↑↑D, ↓E♭ 56/55, 65/64
3 44.4444 3D, E♭♭ 3D, E♭ 36/35, 40/39, 77/75
4 59.2593 4D, ↓4E♭ 4D, ↓11E
5 74.0741 D♯, ↓3E♭ 5D, ↓10E 25/24
6 88.8889 ↑D♯, ↓↓E♭ 6D, ↓9E
7 103.704 ↑↑D♯, ↓E♭ 7D, ↓8E 35/33
8 118.519 3D♯, E♭ 8D, ↓7E 15/14, 77/72
9 133.333 4D♯, ↓4E 9D, ↓6E
10 148.148 D𝄪, ↓3E 10D, ↓5E 12/11, 49/45
11 162.963 ↑D𝄪, ↓↓E 11D, ↓4E 11/10, 54/49
12 177.778 ↑↑D𝄪, ↓E D♯, ↓3E
13 192.593 E ↑D♯, ↓↓E 28/25, 39/35
14 207.407 ↑E, ↓↓F♭ ↑↑D♯, ↓E 44/39
15 222.222 ↑↑E, ↓F♭ E 25/22
16 237.037 3E, F♭ ↑E, ↓↓F 8/7, 55/48
17 251.852 4E, ↓4F ↑↑E, ↓F
18 266.667 E♯, ↓3F F 7/6, 64/55
19 281.481 ↑E♯, ↓↓F ↑F, ↓↓G♭ 33/28
20 296.296 ↑↑E♯, ↓F ↑↑F, ↓G♭
21 311.111 F 3F, G♭ 6/5
22 325.926 ↑F, ↓↓G♭♭ 4F, ↓11G
23 340.741 ↑↑F, ↓G♭♭ 5F, ↓10G 39/32
24 355.556 3F, G♭♭ 6F, ↓9G 16/13, 60/49
25 370.37 4F, ↓4G♭ 7F, ↓8G
26 385.185 F♯, ↓3G♭ 8F, ↓7G 5/4
27 400 ↑F♯, ↓↓G♭ 9F, ↓6G 44/35
28 414.815 ↑↑F♯, ↓G♭ 10F, ↓5G 14/11
29 429.63 3F♯, G♭ 11F, ↓4G 9/7, 32/25, 50/39, 77/60
30 444.444 4F♯, ↓4G F♯, ↓3G
31 459.259 F𝄪, ↓3G ↑F♯, ↓↓G 13/10
32 474.074 ↑F𝄪, ↓↓G ↑↑F♯, ↓G
33 488.889 ↑↑F𝄪, ↓G G
34 503.704 G ↑G, ↓↓A♭ 4/3, 75/56
35 518.519 ↑G, ↓↓A♭♭ ↑↑G, ↓A♭ 66/49
36 533.333 ↑↑G, ↓A♭♭ 3G, A♭ 15/11, 49/36
37 548.148 3G, A♭♭ 4G, ↓11A 11/8, 48/35
38 562.963 4G, ↓4A♭ 5G, ↓10A
39 577.778 G♯, ↓3A♭ 6G, ↓9A 7/5, 39/28
40 592.593 ↑G♯, ↓↓A♭ 7G, ↓8A 55/39
41 607.407 ↑↑G♯, ↓A♭ 8G, ↓7A 78/55
42 622.222 3G♯, A♭ 9G, ↓6A 10/7, 56/39
43 637.037 4G♯, ↓4A 10G, ↓5A
44 651.852 G𝄪, ↓3A 11G, ↓4A 16/11, 35/24
45 666.667 ↑G𝄪, ↓↓A G♯, ↓3A 22/15, 72/49
46 681.481 ↑↑G𝄪, ↓A ↑G♯, ↓↓A 49/33
47 696.296 A ↑↑G♯, ↓A 3/2
48 711.111 ↑A, ↓↓B♭♭ A
49 725.926 ↑↑A, ↓B♭♭ ↑A, ↓↓B♭
50 740.741 3A, B♭♭ ↑↑A, ↓B♭ 20/13, 75/49
51 755.556 4A, ↓4B♭ 3A, B♭
52 770.37 A♯, ↓3B♭ 4A, ↓11B 14/9, 25/16, 39/25
53 785.185 ↑A♯, ↓↓B♭ 5A, ↓10B 11/7
54 800 ↑↑A♯, ↓B♭ 6A, ↓9B 35/22
55 814.815 3A♯, B♭ 7A, ↓8B 8/5, 77/48
56 829.63 4A♯, ↓4B 8A, ↓7B
57 844.444 A𝄪, ↓3B 9A, ↓6B 13/8, 49/30
58 859.259 ↑A𝄪, ↓↓B 10A, ↓5B 64/39
59 874.074 ↑↑A𝄪, ↓B 11A, ↓4B
60 888.889 B A♯, ↓3B 5/3
61 903.704 ↑B, ↓↓C♭ ↑A♯, ↓↓B
62 918.519 ↑↑B, ↓C♭ ↑↑A♯, ↓B 56/33, 75/44
63 933.333 3B, C♭ B 12/7, 55/32, 77/45
64 948.148 4B, ↓4C ↑B, ↓↓C
65 962.963 B♯, ↓3C ↑↑B, ↓C 7/4
66 977.778 ↑B♯, ↓↓C C 44/25
67 992.593 ↑↑B♯, ↓C ↑C, ↓↓D♭ 39/22
68 1007.41 C ↑↑C, ↓D♭ 25/14, 70/39
69 1022.22 ↑C, ↓↓D♭♭ 3C, D♭
70 1037.04 ↑↑C, ↓D♭♭ 4C, ↓11D 20/11, 49/27
71 1051.85 3C, D♭♭ 5C, ↓10D 11/6
72 1066.67 4C, ↓4D♭ 6C, ↓9D
73 1081.48 C♯, ↓3D♭ 7C, ↓8D 28/15
74 1096.3 ↑C♯, ↓↓D♭ 8C, ↓7D 66/35
75 1111.11 ↑↑C♯, ↓D♭ 9C, ↓6D
76 1125.93 3C♯, D♭ 10C, ↓5D 48/25
77 1140.74 4C♯, ↓4D 11C, ↓4D
78 1155.56 C𝄪, ↓3D C♯, ↓3D 35/18, 39/20
79 1170.37 ↑C𝄪, ↓↓D ↑C♯, ↓↓D 55/28
80 1185.19 ↑↑C𝄪, ↓D ↑↑C♯, ↓D
81 1200 D D 2/1

Notation

Tom Winspear's notation

81 EDO Accidentals created and used by Tom Winspear, based on those provided in Scala though with a logic correction. The innermost accidentals represent one EDOstep, followed by two, then the bracket representing three. Conventional sharp/doublesharp/flat/doubleflat accidentals are reached in steps of five and the pattern repeats itself on them. The chromatic scale can be notated utilizing only six accidentals in either direction - the rest are for enharmonics.

Regular temperament properties

Commas

  • 5-limit commas: 81/80, [-48 1 20
  • 7-limit commas: 81/80, 126/125, [-24 1 0 8
  • 11-limit commas: 81/80, 126/125, 385/384, 12005/11979
  • 13-limit commas: 81/80, 105/104, 144/143, 196/195, 6655/6591

Scales