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Abstract. In Western music history, the musical scales that were
the most successful have 5, 7, or 12 tones per octave, respectively.
Experimentalists have used 19, 31, or more tones per octave. A
novel calculation is presented that yields these cardinalities, with
a minimum of assumptions about scales, and without imposing a
p-limit. The Riemann zeta function plays a central role.

Introduction

Scales are an important structural element of music. From prehis-
toric times until now, as music developed, the scales in use developed
in parallel. And there is a long history of mathematical analysis of
scales, starting with Pythagoras, and with contributions of Avicenna
(Ibn Sina), Zarlino, and hundreds of others in the modern times.

Main stations of scale development are: the pentatonic scale, which
is still today the basic harmonic structure of very simple songs; the
diatonic scale, which is what Western people sing when asked to sing a
scale; the 12-tone equal-temperament (12tET) scale, which is the built-
in scale of all modern keyboard instruments. The number of steps per
octave – the cardinality – of these three scales are 5, 7, or 12, respec-
tively. Beside these, microtonal scales with higher cardinalities have
been used by experimentalists and studied by theorists. Cardinalities
of 19, 31, and 431 have gathered special attention.

The manifold and profound work done on this topic (see e. g. the
extensive bibliography given at [1]) cannot be discussed here in detail.
From the proportions of publications as well as from the historic devel-
opment it can be deduced that some cardinalities seem to be “better”
than others. In this article I will introduce a new measure for how
“good” a cardinality is. Conversely, this measure will allow to search
for “good” cardinalities in a simple systematic way. The cardinalities
favored by the majority of authors and by history will be reproduced
to a high degree.

Most of the literature mentioned deals with tuning, temperament,
or intonation. This article is about cardinality. Though the question

1 These are the numbers N (12 < N ≤ 72) for which a Google search for “N -tone
scale” gave more than 100 different results.
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of cardinality and the question of tuning are closely related, only the
former is studied here, while the latter is left open.

This is a short outline of my article: In section 1, I sketch the well-
known basic concepts about scales; I define some notions and introduce
the basic problem. Section 2 presents something that may be called the
“standard theory” of mathematical scale construction in the so-called
3-limit and 5-limit. The few examples in that section tell nothing new
about scale theory. The purpose is to introduce the formalism that will
be used in the following. In section 3, I expand the “standard problem”,
and make a novel mathematical approach for solving it. The result is
a list of “good” cardinalities.

This article is interdisciplinary in the sense that it treats a music
theoretical topic with mathematical methods. Sections 1 and 2 will
bring nothing new to music theorists, although some of the well-known
facts are presented in an unusual way. Then section 3 will introduce
some kind of mathematics unfamiliar to music theorists. On the other
hand, mathematicians might welcome the short introduction to the
topic in the first sections, whereas the last section might appear rather
trivial to them.

1. Scales and numbers

In this introductory section the well-known basic concepts about
scales shall be sketched, and some notions defined. For a profound
introduction, see e. g. Benson [2], chapters 4–6.

1.1. Basic notions and definitions. Music is a matter of individual
sensation and judgement. For this reason it cannot be forced into a
rigid mathematical formalism. There is no fixed set of properties that
are mandatory for a musical scale; but at least there are some prop-
erties that tend to make a scale more pleasant. Thus in the following
some notions are defined in a very general way, and not by rigorous
mathematical definitions. They are supposed to represent the basics
of the common-sense understanding of musical scales. The properties
defined for intervals and scales are of a gradual nature, they may not
only apply or not apply, but also may apply to some higher or lower
degree. Despite of their lack of rigor, the definitions will turn out to be
sufficient for deriving a result by mathematical means. The validity of
the result is even underlined by the generality of this approach.

Definition 1. A scale is an ordered set of pitches. It may have a
periodically repeated pattern (e. g. every octave), or may not.

Most studies on scale theory assume that scales have an octave pe-
riodicity. But this property is not needed in this article.
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Definition 2. Evenness of a scale shall denote its closeness to a scale
with all steps of equal length.

For example, an equal-temperament 12-tone scale has the greatest
possible evenness. A diatonic scale in just temperament is less even, as
its step lengths vary from 15:16 (112 cents2) to 8:9 (204 cents).

There are two reasons to aim for evenness. First – For the richness of
music, scales shall have a sufficient number of different tones. And for
being perceived as different, even in short notes, consecutive tones of a
scale shall pitches that are not too close. The two aims of tone multi-
tude and tone discriminability meet in the aim of evenness. Second –
Transposing pieces on fixed-pitch instruments is greatly facilitated with
even scales. This was the main reason for inventing 12tET.

Definition 3. An interval of two tones is consonant if their frequen-
cies have a ratio made up of small integer numbers.

Lower degrees of consonance are present if the ratio contains greater
integers, or if a consonant interval is detuned a little. Though this
classical definition of consonance has its limitations, there is no other
definition that is as widely accepted.

Definition 4. Harmony of a scale shall mean that many pairs of its
tones form consonant intervals, and that at least the simplest consonant
intervals appear in the scale.

Lower degrees of harmony are present if the intervals are less conso-
nant, or if the number of consonant pairs is low, or if simple consonant
intervals (octaves, fifths, fourths, major and minor thirds) are missing.
Note that this definition does not refer to intervals generating a scale,
but to intervals actually appearing in it. The scales considered here
need not be generated by a set of intervals.

Certainly it is possible to define numerical measures for evenness,
consonance, and harmony. But this is not done as it is not necessary
here, and thus the problem is avoided if such measures really represent
the human sensation about these notions.

1.2. The scale construction problem. It is a general aim to con-
struct scales that are both even and harmonic. But the two demands
of evenness and harmony cannot be fulfilled perfectly at the same time.
A just-tempered scale contains a lot of consonant intervals (and some
dissonant ones, which cannot be avoided completely – e. g. “wolf inter-
vals”) and thus is well harmonic, but its steps are only approximately
(albeit sufficiently) equal. An equal-tempered scale has perfectly equal
steps, but the intervals it contains can only be approximately conso-
nant. This is because, e. g., octaves (frequency ratio 1:2) and fifths

2 1 cent is defined as an interval length such that a perfect octave has 1200 cents.
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(frequency ratio 2:3) are incommensurate: One cannot find a common
measure, which is a smaller “basic interval” 1:b (with a real number
b > 1), and two integers n,m, such that the octave has the length of n
basic intervals (steps) and the fifth the length of m steps, i. e.

2 = bn and
3

2
= bm.(1)

Thus, constructing an even and harmonic scale means finding a com-
promise between the two demands of harmony and evenness, and find-
ing approximations to equations like eq. 1. There are (at least) two
different ways of construction:

The first is an approach originating from harmony: Starting with
an empty set, tones are added one after another making sure that
every new tone forms consonant intervals with as many of the previous
tones as possible. This can be formalized by using a set of generating
intervals. The procedure is stopped when an approximately “even”
series of tones is achieved. This is likely to be the way scales developed
in history. In modern times, this procedure has been refined by group
theoretical considerations [3–5].

The second way starts from evenness: A basic step interval 1:b is
taken to build a perfectly even scale with the frequency ratios

(2) · · · : b−1 : 1 : b : b2 : b3 : · · ·
If b is chosen luckily, this scale may contain a lot of consonant and
almost consonant intervals and thus be more or less harmonic.

These two construction schemes are equivalent in the following sense.
If, in a harmonically constructed scale, all steps are replaced by an
average-length step, this will be a marginal change, as the scale was
approximately even already before. This means that the resulting scale
has the form of eq. 2 and is still approximately harmonic. Conversely,
starting from an equally-spaced scale with approximate harmony, the
tones may be shifted a small amount in order to get consonant inter-
vals. So there is a correspondence between scales with higher harmony
and scales with higher evenness. A common characteristic of such cor-
responding scales is the average step length.

Definition 5. If a scale is sufficiently harmonic to contain octaves,
or intervals very close to an octave (pseudo-octaves), and if it is suffi-
ciently even that every (pseudo-)octave is divided into the same number
of steps N , then N is called the cardinality of the scale.

Clearly this definition applies only to a subset of all possible scales.
For all other scales, N remains undefined. N (if it exists) is the average
length of the (pseudo-)octaves divided by the average step length. So
corresponding scales are characterized by their common cardinality (if
they have one, by definition 5). The difference between scales with
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the same cardinality is their tuning. Tuning theory is in principle the
theory of finding compromises between harmony and evenness. In the
rest of this article, no preference will be given either to harmony or to
evenness.

In the history of music, many scales have been constructed, whether
by intuition or by calculation. The most familiar are the pentatonic,
the diatonic, and the chromatic scale with a cardinality of 5, 7, or 12,
respectively; but also microtonal scales [2, ch. 6] with 19, 31 or more
steps per octave have been studied and eventually used.

The aim of this article is to investigate which the preferred cardinal-
ities of scales are, regardless of the specific tuning of the scales. The
reasoning is solely based on the assumption that the scales shall be
even and harmonic as defined above.

2. Solutions for small factors

2.1. Factors 2 and 3. Equation system 1 can be rewritten as

(3)
q2

log 2
=

q3

log 3

(

=
1

log b

)

with integers q2 (=n) and q3 (=m+n). 1:b is the average step interval.
The logarithms may be taken to any base, since a change in the base
makes the terms change by a common factor. Frequently a base of
2 is taken making log 2 = 1 and thus measuring intervals in units of
octaves. But octaves shall not be treated in a preferred way here. In
the following, log shall denote the natural logarithm (base e). The goal
is to find solutions q2, q3. With such a solution, 1/log b will arise. For
this reason the rightmost side of the equation is put in parentheses.

Note that there are no (integer) solutions to eq. 3 . But there are
approximations in the shape of “near-integer” solutions.

One such solution is given by

(4) q2 = 7 , q3 = 11.0947375 . . . ≈ 11

It tells that a scale can be constructed with 7 steps per octave and,
on average, q3–q2=4.0947375... steps per perfect fifth. A number of
4-step intervals in this scale can be made perfect fifths, but not all. As
4 steps are, on average again, too short for a perfect fifth, there must
be 4-step intervals (at least one per octave) that are shorter (flatter).

For example, consider the well-known 7-step tuning

· · · :
5

6
:

15

16
: 1 :

9

8
:

5

4
:

4

3
:

3

2
:

5

3
:

15

8
: 2 :

9

4
:

5

2
: · · ·

· · · A B c d e f g a b c’ d’ e’ · · ·
(This shall only serve as an example, and the way such ratios are found
shall not be discussed here.) This scale is octave periodic, every 7-step
interval is a perfect octave. There are many perfect fifths in it, but



6 PETER BUCH

also inevitable shorter 4-step intervals, such as B–f (45:64, diminished
fifth) and d–a (27:40, comma flat fifth).

Another scale based on solution 4 is an equally spaced scale as in
eq. 2 with b= 7

√
2. Here every fifth is flatter than perfect.

Another solution to eq. 3 is

(5) q2 = 6.8380452 . . . ≈ 7 , q3 = 10.8380452 . . . ≈ 11

It represents the same near-integer approximation as eq. 4, but is
“tuned” to perfect fifths, as q3 − q2 = 4 here. By this it is possible
to construct a scale with all fifths perfect. Now, as q2 < 7, at least
some of the octaves in such a scale must be sharper than perfect.

The last two examples were rather unusual. They demonstrate the
generality of the approach in this article.

Better than the previous approximations to eq. 3 is the well known
near-integer solution

(6) q2 = 12 , q3 = 19.0195500 . . . ≈ 19

With a basic interval of 1:b = 1: 12
√

2 we get an equal-step scale (eq. 2),
where 12 steps form an octave and 7 steps form an approximate fifth
(because 7.0195500. . . steps are a perfect fifth). This is the familiar
12tET scale.

A series of approximations to eq. 3 with increasing precision can be
found by the continued fraction expansion of log 3/ log 2 [2, ch. 5].

If a scale is based on a solution of eq. 3, and if q2 is a near-integer,
the scale will have a well defined cardinality

(7) N = nint(q2) ,

where nint(x) is the nearest-integer function, which maps a real number
x to the nearest integer3.

2.2. More factors. For high degrees of harmony (see definition 4),
scales will have to contain more kinds of consonant intervals, e. g.
fourths (3:4), major thirds (4:5), and minor thirds (5:6). In order to
take these into account, eq. 3 has to be extended to these larger factors:

(8)
q2

log 2
=

q3

log 3
=

q4

log 4
=

q5

log 5
=

q6

log 6

Given near-integers q2, q3 that satisfy eq. 8, there are near-integers
q4=2q2 and q6=q2+q3 that do so too. The equation system could be
restricted to prime numbers before searching approximations. But this

3 The definition of nint(x) in the middle between integers is of no interest here,
because q2 is a near-integer.
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is not necessary. Moreover, leaving the composite integers in the equa-
tions will give a higher representation to smaller primes, as they appear
as factors more frequently.

In order to find approximate solutions for eq. 8 “visually”, the num-
bers 1/log 2 , 2/log 2 , 3/log 2 , 4/log 2 . . . are marked on the axis of pos-
itive real numbers x, the numbers 1/log 3 , 2/log 3 , 3/log 3 , 4/log 3 . . .
on a second copy of the axis, the numbers 1/log 4 , 2/log 4 , 3/log 4 ,
4/log 4 . . . on a third copy of the axis, and so on, see fig. 1.

The values of x, for which marks on the different axes nearly coincide,
correspond to near-integer solutions qn to eq. 8. So the 12th mark on
the log 2 axis is very close to the 19th mark on the log 3 axis (cf. eq. 6),
the 24th mark on the log 4 axis (of course), the 28th mark on the log 5
axis, and the 31st mark on the log 6 axis, all of them near x ≈ 17.3.
This describes a scale, where the frequency ratios of 1:2, 1:3, 1:4, 1:5,
1:6 are represented by 12, 19, 24, 28, 31 steps, respectively. One step
corresponds, at least on average, to the ratio 1:b with 1/ log b = x. This
means 1:b ≈ 1:1.059, a chromatic semitone. So the 12tET scale is not
only based on a solution of eq. 3, but also on a solution of equation
system 8.

Now, how can all such coincidences of axis marks be found, in a more
systematic way than just by eye? As a first step, in order to allow for
near-integers, the marks of fig. 1 will be replaced by some kind of fuzzy
marks. This is done by a function that marks all integers in a more
tolerant or diffuse way, a not yet further specified periodic function
f(x) that has “peaks” of some width at every integer-valued x.

The x-scaled functions f(x log 2), f(x log 3), f(x log 4), f(x log 5),
f(x log 6) are displayed in fig. 2 and have peaks at the marks of fig. 1.
The function at the bottom of fig. 2 is the sum of the above functions,

(9) F (x) =
6

∑

n=2

f(x log n)

At any x where peaks of different functions f(x log n) coincide within
the peak width, there is an especially great value of the sum function
F (x). The more peaks coincide, and the closer the coincidence is, the
greater F (x) will be. So the procedure for finding good coincidences
is finding local maxima of the “coincidence function” F (x), which are
– in some way – significantly high.

Every peak of f(x log 2) is accompanied by a peak of f(x log 4), which
is half as wide, and wherever peaks of f(x log 2) and f(x log 3) coincide,
there is a narrower peak of f(x log 6) with them. In this way peaks
of F (x) involving small prime numbers are higher and narrower than
others. This would not be the case if the composite factors had been
eliminated from eq. 8. It is a desired effect as it reflects the higher
importance of the simpler consonant intervals in a scale.



F
A
V

O
R

E
D

C
A

R
D

I
N

A
L
I
T

I
E

S
O

F
S
C

A
L
E

S
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x (= 1/ log b)

1
log 2

2
log 2

3
log 2

4
log 2

5
log 2

6
log 2

7
log 2

8
log 2

9
log 2

10
log 2

11
log 2

12
log 2

13
log 2

1
log 3

2
log 3

3
log 3

4
log 3

5
log 3

6
log 3

7
log 3

8
log 3

9
log 3

10
log 3

11
log 3

12
log 3

13
log 3

14
log 3

15
log 3

16
log 3

17
log 3

18
log 3

19
log 3

20
log 3

21
log 3

1
log 4

2
log 4

3
log 4

4
log 4

5
log 4

6
log 4

7
log 4

8
log 4

9
log 4

10
log 4

11
log 4

12
log 4

13
log 4

14
log 4

15
log 4

16
log 4

17
log 4

18
log 4

19
log 4

20
log 4

21
log 4

22
log 4

23
log 4

24
log 4

25
log 4

26
log 4

27
log 4

1
log 5

2
log 5

3
log 5

4
log 5

5
log 5

6
log 5

7
log 5

8
log 5

9
log 5

10
log 5

11
log 5

12
log 5

13
log 5

14
log 5

15
log 5

16
log 5

17
log 5

18
log 5

19
log 5

20
log 5

21
log 5

22
log 5

23
log 5

24
log 5

25
log 5

26
log 5

27
log 5

28
log 5

29
log 5

30
log 5

31
log 5

1
log 6

2
log 6

3
log 6

4
log 6

5
log 6

6
log 6

7
log 6

8
log 6

9
log 6

10
log 6

11
log 6

12
log 6

13
log 6

14
log 6

15
log 6

16
log 6

17
log 6

18
log 6

19
log 6

20
log 6

21
log 6

22
log 6

23
log 6

24
log 6

25
log 6

26
log 6

27
log 6

28
log 6

29
log 6

30
log 6

31
log 6

32
log 6

33
log 6

34
log 6

35
log 6

F
ig

u
r
e

2
.

“F
u
zzy

”
version

of
fi
gu

re
1



10 PETER BUCH

3. A new mathematical approach

3.1. Giving up any p-limit. A scale or a set of intervals is called to
be in the p-limit, if p is the greatest prime number appearing in the
frequency ratios. So equation 3 represents the 3-limit, and equation 8
the 5-limit. Now the next step is to give up any artificial p-limit and
extend our calculation to all frequency ratios 1:n. The goal is to find
some x such that

(10) x =
qn

log n
, n = 2, 3, 4, 5, 6, 7, 8, . . .

with appropriate near-integers qn.
4 A suitable coincidence function is

(11) F (x) =
∞

∑

n=1

1

nσ
f(x log n)

The new n=1 term of the sum can safely be added because it is a
constant – f(0) – and does not change the positions of the local maxima
of F (x). The factor 1/nσ is new as well (unless σ = 0) and has, with
a positive σ, a twofold purpose: first it can ensure convergence of the
infinite sum; second, it gives less weight to greater n. The latter effect
can be regarded as a gentle replacement for the harsh cut-off by a
p-limit.

As an integer-marking function is taken

(12) f(x) = cos 2πx

which has peaks f(x) = 1 for all integer-valued x. It seems to be a
very poor integer-marking function, because of the wide “peaks” of the
simple cosine function. This will be discussed later.

With this f(x), the coincidence function can be transformed as fol-
lows:

F (x) =
∞

∑

n=1

1

nσ
cos(2πx log n)(13)

=
∞

∑

n=1

n−σ Re e−2πix log n

=
∞

∑

n=1

n−σ Re n−2πix

=
∞

∑

n=1

Re n−(σ+2πix)

= Re ζ(σ + 2πix)

4 Readers who are not familiar with the following mathematics may skip one
page of text and continue at the paragraph marked by an asterisk. The function
F (x) of section 2 will just be replaced by a different F (x).
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Here Re denotes the real part of a complex number and ζ is the
complex-valued Riemann zeta function5. Whereas the infinite sum con-
verges only for σ > 1, the zeta function can be extended analytically
to all real σ. The zeta function has been investigated intensively on
the so-called critical line, which is given by the special value σ = 1/2.
For an introduction to the zeta function, see e. g. Bombieri [7].

* The problem of finding coincidences in the qn/ log n (n = 2, 3, 4, 5, ...)
is now translated into the simpler task of finding local maxima of
Re ζ(σ + 2πix) as a function of x, with a fixed σ. Fig. 3 shows F (x)
and the axes of fig. 1 for n = 2, 3, 5. The correspondence between local
maxima and coincidences can be seen easily. A value of 1/2 for σ has
been chosen just for convenience, but it can be shown that the position
of the very high local maxima is almost the same for a wide range of
σ values.

The low quality of the cosine function as an integer marker, as noted
above, is amended by the fact that F (x) is a sum over all integers, not
only primes: thus there is not only a term for n = 2, but also for the
powers of 2, n = 4, 8, 16, ..., which have narrower maxima which add
up at the maxima of the n = 2 term and cancel out elsewhere. By this
the n = 2 maxima are “sharpened”.

3.2. Finding good approximations. Now what are the significant
local maxima of F (x)? A look at the function shows that the peaks
tend to get higher for greater (positive) x, with a decreasing slope.
That is why significance should not be defined by a constant threshold.

For this reason the heights of the local maxima are measured relative
to the dotted line in fig. 3. The dotted line (“growth curve”) is an
empirically found smooth function that approximates the growth of
those local maxima that are greater than the ones before them.6 A
local maximum shall be considered significant if it reaches 95% of the
growth curve. This is an arbitrary threshold value for the time being,
but it will turn out to give sensible results.

Every “high” local maximum of the zeta function is located very
close to one of the so-called Gram points7 gk (k = −1, 0, 1, 2 . . .)[8].
The Gram points (scaled down by a factor of 2π to match the definition

5 Named after Bernhard Riemann (1826–1866)[6], mathematician, not to be
mistaken for Hugo Riemann (1849–1919), musicologist. The zeta function was first
introduced by Leonhard Euler (1707–1783), who also invented the Tonnetz, but was
unaware of the connection between zeta function and music theory.
So, Riemann 6= Riemann, but Euler = Euler.

6 The empiric growth curve is 2

3
exp(

√

3ϑ′(2πx)), where ϑ′ is the derivative of

the Riemann-Siegel theta function.
7 After Jorgen Gram (1850-1916), Danish mathematician.

The Gram points gk are defined by Im ζ( 1

2
+ igk) = 0 , Re ζ( 1

2
+ igk) 6= 0
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k x = F (x) = relative q2 = q3 = q5 = q7 =
gk/2π ζ(1

2
+igk) height x log 2 x log 3 x log 5 x log 7

-1 1.54 1.53 102.89% 1.07 1.69 2.48 2.99
0 2.84 2.34 100.45% 1.97 3.12 4.57 5.53
2 4.40 2.85 96.07% 3.05 4.84 7.09 8.57
7 7.26 3.66 97.98% 5.03 7.97 11.68 14.12

13 10.04 4.16 97.22% 6.96 11.03 16.16 19.54
32 17.34 5.19 98.31% 12.02 19.05 27.90 33.74
63 27.34 5.97 96.53% 18.95 30.04 44.01 53.21

125 44.69 7.00 96.51% 30.98 49.10 71.93 86.96
182 59.13 7.57 95.68% 40.99 64.97 95.17 115.07
255 76.46 8.25 96.57% 53.00 84.00 123.06 148.78
378 103.81 9.15 98.03% 71.95 114.04 167.07 202.00

1934 389.55 13.37 100.72% 270.02 427.97 626.96 758.03
2291 448.68 13.07 95.03% 311.00 492.93 722.13 873.10
2566 493.37 13.48 95.75% 341.98 542.02 794.04 960.05
3969 712.71 14.75 95.84% 494.01 782.99 1147.06 1386.87
· · · · · · · · · · · · · · · · · · · · · · · ·

Table 1. Near-integer solutions of equation 10

of x) are marked on the axis at F (x) = 0 in fig. 3. Furthermore, the
marks at the significant local maxima are labeled “gk/2π”. One can see
that significant local maxima only appear at Gram points. The value
of F (x) at a significant local maximum is almost the same as F (gk/2π),
insofar as in the resolution of fig. 3, the labeled Gram points cannot
be distinguished from local maxima. So for finding the significant local
maxima of F (x), it is sufficient to evaluate the function at the Gram
points, which are easy to calculate. In the following the role of the
significant maxima of F (x) is taken over by the Gram point values.

Table 1 lists all significant maxima (by the 95% definition) up to
x = 2000. The entries up to k=32 are covered by fig. 3. The first four
columns show the Gram point index k, its position and F (x) as an
absolute value as well as relative to the growth curve. Further columns
show the near-integers qn for the primes n = 2, 3, 5, 7. The greater
F (x) is, the closer the qn are to integers, and the better an even and
harmonic scale can be built in which nint(qn) steps represent an interval
of 1:n. The table also shows that the smaller primes tend to have better
approximations. Octaves are always approximated well; this has not
been a mandatory precondition in our deduction, but it comes from the
natural importance of the prime factor 2. The cardinalities N=nint(q2)
in the table are 1, 2, 3, 5, 7, 12, 19, 31, 41, 53, 72, 270, 311, 342, and
494.

This is a short discussion of the individual rows of table 1.
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k=–1, N=1: The first row represents a scale of octaves only, the only
possible scale in the 2-limit. It is very regular and does not suffer of
incommensurateness. But there are too few tones to make real music.

k=0, N=2: In the second row fifths are added to form approximate
half-octave steps.

k=2, N=3: This approximation represents the different kinds of
triads, which are very simple “scales”.

k=7, N=5: With the local maximum at x=7.26 real music begins.
The pentatonic scale is the first to have enough tones to form pleasant
tunes.

k=13, N=7: The x=10.04 maximum tells that a cardinality of 7 can
make good scales. So it is no surprise that the 7-step diatonic scale has
been very successful; Western music is based on it. Some aspects have
been discussed in subsection 2.1.

k=32, N=12: The x=17.34 row of table 1 represents a 12-tone scale
(cf. eq. 6). The importance of this cardinality is well-known.

k=63, N=19; k=125, N=31: These two rows describe microtonal
scales with 19 and 31 tones per octave, which have been studied by
many authors.

k=182, N=41: Studies on 41-tone scales are very rare, what is a
surprise with regard to the good quality of this approximation. 43-tone
scales are mentioned much more frequently, though at N=43 F (x) has
a relative value of only 76.1%.

k=255, N=53: A division of the octave in 53 steps was already
discussed by Isaac Newton.

k=378, N=72: The next approximation with q2 ≈ 72 is of special
interest, as 72 is a multiple of 12. So a 72-tone even scale can be used
not only for approximating just intonation to a high degree, but also
for reproducing the chromatic 12-tone scale, which it contains 6 times.
The 72tET scale has been explored by various authors.

k ≥ 1934, N ≥ 270: While 72 tones in an octave can still be well
distinguished by the human ear, there is no question that 270 or more
tones, as in the last four rows of table 1, are too many. These and the
further, unlisted, solutions are only of mathematical interest.

Conclusion

The essence of the entire table 1 and of this article is that . . . 5,
7, 12, 19, 31,. . . steps per octave are all good approximations to the
scale construction problem, whereas the numbers in between are of less
quality, in a very general manner. I have obtained this result from
only two simple assumptions about scales – harmony and evenness –
without limiting the prime factors involved in the ratios in consonant
intervals. The explicit construction of a scale has not been necessary
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for this. The question of how to tune the . . . 5, 7, 12, 19, 31,. . . tones
has been left open.

The cardinalities found to be good are not new, but well-known.
This confirms the validity of the novel calculation presented here. To
my knowledge this is the first time that evidence for good cardinalities
is found without referring to particular tunings.
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