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Abstract 
The bimodular approximation, which has been known for over 300 years as an accurate 
means of computing the relative sizes of small (sub-semitone) musical intervals, is shown to 
provide a remarkably good approximation to the sizes of larger intervals, up to and beyond 
the size of the octave. If just intervals are approximated by their bimodular approximants 
(rational numbers defined as frequency difference divided by frequency sum) the ratios 
between those intervals are also rational, and under certain simply stated conditions can be 
shown to coincide with the integer ratios which equal temperament imposes on the same 
intervals. This observation provides a simple explanation for the observed accuracy of certain 
equal divisions of the octave including 12edo, as well as non-octave equal temperaments such 
as the fifth-based temperaments of Wendy Carlos. Graphical presentations of the theory 
provide further insights. The errors in the bimodular approximation can be expressed as 
bimodular commas, among which are many commas featuring in established temperament 
theory.  

Introduction 
Just musical intervals are characterised by small-integer ratios between frequencies. Equal 
temperaments, by contrast, are characterised by small-integer ratios between intervals. Since 
interval is the logarithm of frequency ratio, it follows that an equal temperament which 
accurately represents just intervals embodies a set of rational approximations to the 
logarithms (to some suitable base) of simple rational numbers. This paper explores the 
connection between these rational logarithmic approximations and those obtained from a 
long-established rational approximation to the logarithm function – the bimodular 
approximation.  

After establishing notations, conventions and theoretical foundations we introduce bimodular 
approximants and list some of their properties. We then embark on an exploration of the 
relationship between bimodular approximants and equal temperaments. This discussion 
draws on a study of the errors in approximants and the related topic of bimodular commas. A 
coordinate system providing a natural environment for the study of equal temperaments is 
then introduced and illustrated with two types of diagram. An account is then given of some 
more complex approximant-related structures which have been found in equal temperaments. 

Notations and conventions 
We shall use the term interval to refer to the logarithm of frequency ratio, so that intervals 
combine by addition, rather than multiplication. A just interval is an interval having a simple 
rational frequency ratio.	

We shall use a variety of notations to represent specific just intervals. 

Intervals specified with a numerical frequency ratio are notated with an underscore, which 
thus serves as a shorthand for a suitable logarithm function: 7/4. 

For 5-limit intervals we use the traditional naming system: P = perfect, M = major, m = 
minor, A = augmented, D = diminished. A subscript indicates the number of degrees of the 
scale. Thus M6 = major sixth = 5/3. For certain commonly occurring intervals a single-letter 
shorthand is used:  

o = P8, F = P5, f = P4, M = M3, m = m3, T = M2
+, t = M2, s = m2 = 16/15, X = A1= 25/24.  



To distinguish intervals differing by one or more syntonic commas, superscripts + and – are 
appended. Thus m3

– denotes a just minor third reduced by one syntonic comma (a 
Pythagorean minor third). The undecorated symbol represents the ‘classic’ form of the 
interval, for which the exponent of 3 in the frequency ratio (ignoring the sign) is a minimum, 
or where this rule is ambiguous, the form with the maximum exponent of 5 (ignoring the 
sign). Some instances to note are: 

 A5 = 2M3 = 25/16     D5 = 2m3 = 36/25  M2 = 10/9 

 D4 = P8 – A5 = 32/25     A4 = P8 – D5 = 25/18 m7 = P8 – M2 = 9/5 

The following notations are used for commas and other small intervals: 0 = unison, c = 
syntonic comma, p = Pythagorean comma, D (=D2) = diesis, d (= D–) = diaschisma, D+ = 
major diesis, Dmin (= X- -) = minimal diesis, Dmax (= X-) = maximal diesis (porcupine comma), 
σ = schisma. 

The general interval expressed in logarithmic units is represented by the symbol	�. A dash 
indicates a tempered interval (��) and a hat indicates an interval expressed in units of the scale 
step (��	). These symbols may be combined (���). 

Frequency ratios and interval measures 
The frequency ratio between two tones having frequency f1 and f2 will be denoted by 

� =
��

��
																																																																																																																																									(1)			

In the case of a just interval r can be expressed as the ratio of two integers, n and d: 

� =
�

�
																																																																																																																																									(2)	

The size of the interval J with frequency ratio r is 

� = �����
(�) =

��(�)

��(��)
																																																																																																											(3)	

where ru is the frequency ratio for the unit of interval measurement. When the unit is the cent, 

�� = 2�/����																																																																																																																													(4)	

For the purpose of this paper we choose a value of ru which keeps the algebra simple, namely 

�� = �� =	7.38906...	 	 	 	 	 	 	 	 										(5)	

so that 

� =
�

�
���																																																																																																																																			(6)	

� = ���																																																																																																																																							(7)		

In this system the unit interval is twice the natural logarithmic unit (the neper), and may 
conveniently be termed the dineper (dNp). Its size in cents is 

����

�� �
=	 3462.468...		 	 	 	 	 	 	 	 										(8)	

or about three octaves less 1.4 semitones. This number can be used to convert intervals 
expressed in dNp to cents when required. 

 

 



Bimodular approximants 
Given an interval J with frequency ratio r, we define its bimodular approximant �(�) as 
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� − 1
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The first term of this series provides the basis for an approximation to J accurate to second 
order in � 

� ≈ �	 																																																																																																																																		(13)	

For frequency ratios less than one, � and �	are both negative. 

The function �(�) is the order (1,1) Padé approximant of the function �(�) = 	½ 	ln	� in the 
region of r = 1, which has the property of matching the function value and its first and second 
derivatives at this value of r.1 The approximant function is thus accurate to second order in     
r – 1. 

A version of this approximation to the logarithm function, sometimes called the bimodular 
approximation, was described in 1701 by Sauveur2 and later used by Euler and others.3 

As the ratio of two polynomials,	�(�)	is a rational function. In the case of just intervals, for 
which r is a rational number (n/d),	�	is also a rational number, being expressible as 
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�
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where j and g are integers.	� may thus be termed a rational approximant of �. 

Example: The perfect fifth F has frequency ratio r = 3/2 and approximant � = (3 – 2)/(3 + 2) 
= 1/5 = 0.2. The accurate size of the interval is J = ½ ln(3/2) = 0.20273... dNp. 

The general approximant has the following relationship to the frequencies �� and ��: 
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This expression can be viewed as an approximation to an integral in which the interval is 
built up from infinitesimal frequency increments: 
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Applying one-point Gaussian quadrature to this integral gives the approximation 
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The bimodular approximation is of historical importance as a means of computing logarithms 
and the sizes of sub-semitone intervals. The purpose of this paper is to show that it can also 
be applied usefully to larger intervals, in which role it provides insights into the 
representation of just intervals in equal temperaments. 



A graphical representation of the bimodular approximation is shown in Figure 1. Some 
common 5-limit just intervals are represented on the diagram by lines radiating from the 
origin, each line having a gradient equal to the interval’s frequency ratio. The error in the 
approximation only becomes visibly apparent for intervals approaching octave size.                              

 
      Figure 1. Graphical representation of the bimodular approximation 

 

The ratio of an interval to its approximant proves to be a useful quantity and will be termed 
the interval’s gauge (G): 
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�
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=

tanh�� �
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�
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�� +

�

�
�� + ⋯ 																																																																		(18)			 

The value of G approaches unity from above as � becomes small. As well as a ratio, G can be 
considered as an interval. This interval, the result of multiplying J by 1/�, is somewhat 
greater than 1dNp (≈ 3462 cents). 

For tempered intervals �′ we also define a tempered gauge	�′:  

�′=
�′

�
																																																																																																																																		(19) 

Like its untempered counterpart, the tempered gauge approximates 1dNp. When expressed in 
steps of an equal temperament it will be denoted by ���. 

Bimodular approximants of common intervals 
Approximants for the first 31 superparticular intervals – the intervals between consecutive 
harmonics of a fundamental frequency – are shown in Figure 2. The harmonics are numbered 
on the vertical lines and all intervals transposed to lie within the octave, with harmonics of 
the note C, including the septimal seventh (‘B’ in sagittal notation), indicated at the bottom 



of the figure. These approximants are reciprocals of odd integers. Those in each row of the 
diagram sum to about ½ ln(2) = 0.34657... (an accurate octave), with increasing accuracy in 
successive rows. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Approximants of low-order superparticular intervals 

The approximants of some other common intervals are listed in Table 1. 

Inspection of the approximants in Figure 2 and Table 1, and others obtainable quickly by 
mental calculation, reveals many near-rational relationships between just intervals: 

Two perfect fourths (r = 4/3, � = 1/7) approximate a minor seventh (r = 9/5, � = 2/7) 

Three major thirds (r = 5/4, � = 1/9) or two 7/5s (� = 1/6) or five 8/7s (� = 1/15) 
approximate an octave (r = 2/1, � = 1/3) 

Three 8/7s (� = 1/15) or two 11/9s (� = 1/10) approximate a perfect fifth (r = 3/2, � = 1/5) 

Two 9/7s (� = 1/8) approximate a major sixth (r = 5/3, � = 1/4) 

Three 11/10s (� = 1/21) approximate a perfect fourth (r = 4/3, � = 1/7) 

Three small tones (r = 10/9, � = 1/19) approximate an 11/8 (� = 3/19) 

Three large tones (r = 9/8, � = 1/17) approximate a 10/7 (� = 3/17) 

Seven chromas (r = 25/24, � = 1/49) approximate a perfect fourth (r = 4/3, � = 1/7) 

These examples demonstrate the value of approximants as a tool for making quick estimates 
of interval sizes, or explaining seemingly fortuitous relationships between them. It will be  
shown that the underlying relationships also provide insights into the properties of tuning 
systems in which the approximate numerical relationships are rendered exact by tempering. 
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Just interval, �   Symbol  Frequency ratio, r Approximant, � 

Perfect twelfth   P12  3/1   1/2 

Major seventh   M7  15/8   7/23 

Greater just minor seventh m7  9/5   2/7 

Pythagorean minor seventh m7
–  16/9   7/25 

Major sixth   M6  5/3   1/4 

Minor sixth   m6  8/5   3/13 

Classic augmented fifth A5, 2M  25/16   9/41   

Classic diminished fifth D5, 2m  36/25   11/61 

Septimal augmented fourth 10/7  10/7   3/17   

Classic augmented fourth A4  25/18   7/43 

Septimal diminished fifth 7/5  7/5   1/6   

Septimal major third  9/7  9/7   1/8   

Semitone maximus  m2
+, s+  27/25   1/26 

Chroma   A1, X  25/24   1/49 

Syntonic comma  c  81/80   1/161= 1/(7×23) 

Diesis    D2, D  128/125  3/253 = 3/(11×23) 

Major diesis   D+  648/625  23/1273 = 23/(19×67) 

 

Table 1. Approximants of some other common intervals 

Relationships among intervals, frequency ratios and approximants 
The following results relating to bimodular approximants � of intervals � with frequency ratio 
r follow directly from the definition (eqn 9). 

(� + 1)(1 − �) = 2																																																																																																										(20) 

�� + �� = 0													
	

⇔ 			 ���� = 1					 		
	

⇔ 			�� + �� = 0																																												(21)	 

�� + �� + �� = 0				
	

⇔ 			 ������ = 1			
	

⇔ 			�� + �� + �� + 	������ = 0															(22)	 

Equation 21 states that reversing the sign of  � reverses the sign of �. Eqn 22 (of which eqn 
21 is a special case) expresses the summation rule for the tanh function: 

�� = �� + �� 											
	

⇔ 			�� = tanh(��) =
�� + ��

1 + ����
																																																	(23) 

where �� = − ��	and �� = − ��. The term ������	in eqn 21 can be viewed as the summation 
error incurred when approximants take the place of accurate intervals. 

It is sometimes convenient to work with the wavelength ratio, w = 1/r. In this formulation the 
relationships have exact symmetry: 

� =
(1 − �)

(1 + �)
	,													� =

(1 − �)

(1 + �)
,															(1 + �)(1 + �) = 2																									(24)	 

and eqns 21 and 22, expressed in terms of w, have the following duals: 

���� = 1			 				
	

⇔ 			�� + �� = 0																																																																																					(25) 

������ = 1			
	

⇔ 			�� + �� + �� + 	������ = 0																																																				(26) 

Here the values of � and w are unconstrained: |�| > 1 and w < 0 are permitted. In such cases 
	� is complex, but physical meaning can always be restored by making a substitution using 



eqn 25. Thus eqn 26 (considered as a general relationship between three intervals) can be 
expressed alternatively as 

����

��
= 1			 			

	
⇔ 			�� + �� − �� − 	������ = 0																																																					(27) 

Another option is to avoid calculations involving	� and work exclusively with �, r and w, for 
which the given relationships may be applied with impunity over the full range of real values. 

Equal temperaments 
An equal temperament (ET) is a tuning system constructed from equal interval steps and 
representing an approximation to just intonation. It is usually defined by dividing some 
interval (the base interval) into an integer number of equal parts, this number being termed 
the cardinality of the ET. The base interval is very commonly the octave, and usually tuned 
pure, but other choices are possible. Octave-based temperaments are referenced by various 
shorthand notations such as 12edo, 12ed2, 12et or 12tet, ‘12’ in this case denoting the 
cardinality, ‘ed’ = ‘equal division’, and ‘(t)et’ = ‘(tone) equal temperament’. ‘o’ or ‘2’ is an 
abbreviation of the name or frequency ratio of the base interval (in this case the octave). 
Some writers prefer to confine the use of ‘edo’ to tunings for which there is no implied 
intention to approximate just intonation, but we shall not make this distinction.  

While the pitches of an ET are fixed, their musical interpretation can differ depending on 
context (A-sharp/B-flat) and between different conceptual versions of the temperament. If the 
aim of the temperament is to produce an approximation to just intonation (JI) two tuning 
approaches are commonly adopted. 

The first is based on a val, a vector defining the sizes of tempered intervals representing the 
prime number frequency ratios (2, 3, 5, etc.) up to some prime limit. Other tempered intervals 
are constructed by combining the tempered primitive intervals in amounts equal to the 
powers of 2, 3, 5, etc. in their frequency ratios. The patent val tunes each primitive interval to 
the nearest scale step.  

The second approach tunes every interval to the nearest scale step. In the case of the more 
complex intervals this produces tunings which differ from those derived from the patent val – 
a phenomenon known as inconsistency. 

Example: 29edo 
For 29edo the 5-limit patent val is <29 46 67|, but the meantone version of this 
temperament, ‘29c’, has val <29 46 68|. An augmented fourth (25/16) is tempered to 18 
steps by the patent val, to 20 steps by 29c, and to 19 steps by a version of 29edo adopting 
the nearest-step tuning approach. 

Near-equal progressions of just intervals 
A sequence of approximants 

� =
�

�
																	(� = 0,1,2,… )																																																																																							(28)	 

where g is a fixed integer and j takes a succession of integer values, correspond to intervals 
with frequency ratios 

� =
� + �

� − �
										(� = 0,1,2,… )																																																																																							(29) 

Since the approximants are all multiples of the constant 1/g, we can expect that the associated 
intervals, provided they do not become too large, will lie close to multiples of a unit step, and 
will thus form an approximation to an equal temperament. 



This expectation is confirmed by the following examples: 

The approximants (0/9, 1/9, 2/9, 3/9) with frequency ratios (9/9, 10/8, 11/7, 12/6) 
correspond to intervals (0, 386, 782, 1200) cents, which are close to steps of 3edo. 

The approximants (0/1, 1/12, 2/12, 3/12, 4/12) with frequency ratios (12/12, 13/11, 14/10, 
15/9, 16/8) correspond to intervals (0, 289, 583, 884, 1200) cents, which are close to steps 
of 4edo. 

The approximants (0/1, 1/15, 2/15, 3/15, 4/15, 5/15) with frequency ratios (15/15, 16/14, 
17/13, 18/12, 19/11, 20/10 with) correspond to intervals (0, 231, 464, 702, 946, 1200) 
cents, which are close to steps of 5edo. 

The approximants (0/1, 1/18, 2/18, 3/18, 4/18, 5/18, 6/18) with frequency ratios (18/18, 
19/17, 20/16, 21/15, 22/14, 23/13, 24/12) correspond to intervals (0, 193, 386, 583, 782, 
988, 1200) cents, which are close to steps of 6edo. 

The approximants (0/35, 1/35, 2/35, 3/35, 4/35, 5/35, 6/35, 7/35) correspond to frequency 
ratios (35/35, 18/17, 37/33, 19/16, 39/31, 4/3, 41/29, 3/2) and intervals (0, 99, 198, 297, 
397, 498, 599, 702) cents, which are close to steps of 12edo. 

A sequence of this sort is made up of the intervals between pairs of harmonics which share a 
common sum (or average) frequency. We shall call it a near-equal progression. 

If two approximants are expressed as fractions with the same denominator they can be seen to 
be members of such a sequence, and this provides a simple way to picture relationships 
between intervals whose approximants bear a simple ratio to one another. 

For example, our earlier observation that the major third (r = 5/4) and the octave (r = 2/1 = 
6/3) are roughly in their approximant ratio 1/9:1/3 = 1:3 can be viewed alternatively in terms 
of intervals between the inner and outer pairs of harmonics in the following segment of the 
harmonic series: (3 4 5 6). These pairs have equal frequency sums and frequency differences 
in the ratio 1:3. 

Approximant ratio matching in equal temperaments 
By developing the forgoing ideas we shall show that every equal temperament contains 
readily identifiable sets of tempered intervals whose relative sizes match the ratios of the 
associated bimodular approximants. Such sets will be described as approximant-matched. 
When a temperament has approximant-matched sets containing intervals of low complexity it 
often represents a good approximation to just intonation, within a certain scope such as that 
defined by a prime limit. 

For a pair of tempered intervals ��
�  and ��

�  with approximants ��
�  and ��

� , approximant-
matching means 
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which implies that ��′ and ��′ have the same tempered gauge: 
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or (expressed in steps of the temperament) 

���
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��
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�

��
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� 																																																																																																											(32)		 

Tempered gauges have values close to 1 dNp (about three octaves). In cases of practical 
interest they very commonly correspond to an integer number of scale steps. 

The following are some examples of approximant-matching in equal temperaments. 



Example: approximant-matching in 12edo 
Attempts to account for the success of 12edo as a 5-limit tuning have ranged from appeals 
to pure coincidence (which in view of the temperament’s extraordinarily accurate 
rendering of fourths and fifths is less than convincing) to arguments based on continued 
fractions, which do little more than express the apparent coincidence in a different way. 
An altogether more satisfactory, and very simple, explanation is provided by bimodular 
approximants. 

If the perfect fifth and the perfect fourth – the most fundamental intervals after the octave 
– are adjusted so that their ratio matches that of their bimodular approximants, 1/5:1/7 or 
7:5, and their sum is tuned to a pure octave, the result is a division of the octave into 7 + 5 
= 12 equal parts: 12edo. 

An analysis of errors (below) shows that the tuning of approximant matched intervals is 
particularly accurate when the intervals are of similar size, not too large, and adjusted so 
that their sum is a pure interval – criteria which are all satisfied in the case of the (f, F) 
approximant match in 12edo. This provides a simple rationale for the remarkable accuracy 
of this temperament in the 3-limit, which is characterised by an error in the fifth of less 
than 2 cents. 

The approximate 5:7 ratio between the fourth (4/3) and the fifth (3/2) can be appreciated 
intuitively by considering the harmonic series segment (14 15 16 17 18 19 20 21) in which 
intervals of a fourth and a fifth between the pairs of singly and doubly underlined 
harmonics are associated with equal frequency sums and frequency differences of 5 and 7, 
respectively. The associated near-equal progression also provides an explanation for the 
well-known fact that one and three steps of 12edo closely approximate 18/17 and 19/16, 
respectively. 

Approximant ratios also explain 12edo’s somewhat less impressive accuracy in the 5-limit 
and the 7-limit. The approximant-matched set containing the perfect fifth and fourth has a 
tempered gauge of 35 steps: 

��′=
5

1/7
=

7

1/5
= 35																																																																																																(33) 

Also in this set is the 5-limit minor seventh (9/5), as can be seen by noting that in 12edo 
the ratio of the perfect fourth to the minor seventh (5:10) matches the ratio of the 
corresponding approximants, 1/7 : 2/7 (a property shared by all temperaments in the 
meantone family). 

Another important approximant-matched set for 12edo comprises the major third, the 7/5 
interval, the major sixth and the octave. These matched interval sets can be summarised as 
follows, with each set followed in brackets by the tempered gauge ���which its members 
share: 

 f’ : F’ : m7’   =   1/7: 1/5 : 2/7   =   5 : 7 : 10    (��� = 35) 

 M’ : 7/5’ : M6’ : o’   =  1/9 : 1/6 : 1/4 : 1/3   =   4 : 6 : 9 : 12  (��� = 36) 

A more extensive (but not exhaustive) list of approximant-matched 7-limit intervals in 
12edo is given below. Here the intervals in each matched set (with dashes omitted) are 
written in a bracket, followed by the tempered gauge as a subscript. 

(T, 10/7)34  (f, F, m7)35  (M, 7/5, M6, o)36  

(21/16, 25/12, 27/10)37  (t, 14/5, P12)38  (7/6, 10/3)39 



Example: approximant-matching in 22edo 
22edo is another temperament providing a workable approximation to the 5-limit. Its 
matches include the following: 

(s, 35/27)62 (M, f)63  (9/7, M6)64  (7/6, F, m6)65  

(m, 7/5, 7/4, o, 15/7)66 (T, m10, 25/9)68 

Example: approximant-matching in 53-edo 
The matches of 53edo, a very accurate 5-limit temperament, include 

(T, M)153 (m, f, A4
+)154 (s, F)155 (s

+,m6, M6)156  

Example: approximant-matching in fifth-based equal temperaments 
Approximant ratio matching is not confined to octave-based equal temperaments. The 
alpha, beta and gamma temperaments of Wendy Carlos,4 which are normalised to a pure 
perfect fifth, can be understood in terms of approximant-matched pairs of intervals drawn 
from the set (m, M, F). 

The alpha scale divides the fifth into 9 equal parts, setting (M, F) in their approximant 
ratio 1/9 : 1/5 = 5 : 9. The same match is exploited by 31edo. 

The beta scale divides the fifth into 11 equal parts, setting (m, F) in their approximant 
ratio 1/11 : 1/5 = 5 : 11. The same match is exploited by 19edo. 

The gamma scale divides the fifth into 20 equal parts, setting (m, M) in their 
approximant ratio 1/11 : 1/9 = 9 : 11. The same match is exploited by 34edo. 

The gamma scale achieves the highest accuracy of these three by approximant-matching a 
pair of small, similarly sized intervals whose sum is normalised – principles which have 
already been mentioned in relation to 12edo and which will be discussed further in 
connection with approximant errors. 

Miracle temperament divides the fifth into 6 equal parts, exploiting the following 
approximant ratios (amongst others): 

 8/7’ :  11/9’ :  7/5’ : F’ =  1/15 : 1/10 : 1/6 : 1/5 =  2 : 3 : 5 : 6  (��� = 30) 

Example: approximant-matching in 88cET 
Approximant-matching also sheds light on a group of temperaments known by the generic 
name 88 cent equal temperament (88cET). The member of this temperament family 
formed by dividing a pure major tenth into 18 equal steps (giving a step of 88.129 cents) 
approximant-matches the pair of intervals (F, M6), which have a ratio 1/5 to 1/4 or 4 : 5. A 
fifth of 8 steps and a major sixth of 10 steps sum to an18-step pure major tenth. This is 
another example of accuracy achieved by normalising the sum of a pair of similarly-sized 
approximant-matched intervals. 

The 11/9 and 9/7 intervals (which also have approximants in the ratio 4 : 5) are other 
members of this matched set: 

 11/9’ :  9/7’ :  F’ :  M6’ =   1/10 : 1/8 : 1/5 : 1/4   =    4 : 5 : 8 : 10 (��� = 40)   

Other properties of 88cET, including its accurate 7/6 and 7/4, can be understood by 
considering temperaments in this group as slightly retuned versions of every third step of 
41edo. 

Among the 11-limit approximant-matched sets for 41edo are 

(7/6, M, 15/11)117 (T, 64/55, f, 10/7)119 (8/7, 11/9, 9/7, 7/5, F, M6)120  

(m, 72/49, 7/4)121 (21/20, 27/14, o)123 (16/15, 21/10)124  

(11/10, 25/11, M10)126 (s
+, P12, 49/16)130 



Example: approximant-matching in Bohlen-Pierce equal temperament 
The Bohlen-Pierce equal temperament is a 13-part equal division of the tritave (perfect 
twelfth) which provides an accurate tuning for just intervals involving odd-number 
frequency ratios. It can be understood in terms of the following approximant-matched set 
of intervals which sum to a 13-step normalised perfect twelfth: 

 9/7’ :  7/5’ :  5/3’  =  1/8 : 1/6 : 1/4   =  3 : 4 : 6      (��� = 24)   

This temperament can be considered as a retuned version of every fifth step of 41edo, with 
which it shares these matches. 

Equal temperaments derived from approximant ratio matches 
If an octave-based equal temperament is assessed purely on the basis of its accuracy in the 3-
limit, a single approximant match between 3-limit intervals (which, as we shall show, is 
associated with a single tempered-out comma) is sufficient to define it uniquely (subject to an 
arbitrary integer multiple, since subdivision preserves ratios). It is thus possible to derive a 
succession of 3-limit equal temperaments from the requirement that approximant ratios for 
certain pairs of 3-limit intervals are matched.  

In the first example above, 12edo was derived as a 3-limit temperament by approximant-
matching the fourth and the fifth. Further examples of this technique are listed in Table 2. In 
each row a 3-limit equal temperament is derived from approximant ratio matching for a pair 
of 3-limit source intervals. The procedure yields a dozen well-known temperaments. 

 

Approximant-matched 
3-limit intervals  

Approximants Octave-cardinality of 
associated equal temperament 

Error in fifth 
(cents) 

(F, o) (1/5, 1/3) 5 18.0 

(f, o) (1/7, 1/3) 7 -16.2 

(f, F) (1/7, 1/5) 12 -2.0 

(T, o)  or  (F, m7
-) (1/17,1/3) or (1/5,7/25) 17 3.9 

(o, M9
+) (1/3, 5/13) 26 -9.6 

(T, F) (1/17, 1/5) 29 1.5 

(T, f) (1/17, 1/7) 41 0.5 

(M6
+,o) (11/43, 1/3) 43 -4.3 

(m7
-, o) (7/24, 1/3) 50 -6.0 

(F, M6
+) (1/5, 11/43) 74 -4.7 

(M+, F) (17/145, 1/5) 99 1.1 

(m-, F) (5/59, 1/5) 101 -1.0 

 

Table 2. Low-cardinality 3-limit equal temperaments derived from approximant-matching 

 

This table provides another illustration of the tendency for temperaments to be accurate when 
their approximant-matched intervals are both small and similar in size. 

If this technique is extended to the 5-limit a single approximant ratio match is insufficient to 
define the temperament, but is consistent with a family of temperaments (including 
temperaments of rank 2 and higher) which temper out a specific comma. To illustrate the 
principle we shall use a restricted set of source intervals (T, m, M, f, F) and consider only 
equal temperaments belonging to the meantone, diaschismic and schismic families (which 
temper out, respectively, the syntonic comma, the diaschisma and the schisma). 



The temperaments generated by this procedure are shown in Table 3, in which minimal 
octave cardinalities of meantone, diaschismic and schismic derived temperaments are 
displayed in the body of the table for all combinations of the source intervals (which are 
labelled with their approximants in brackets). 

 

       F (1/5)       f (1/7)      M (1/9)    m (1/11) 

f (1/7) 12,   12,  12    

M (1/9) 31,   46,  77 43,  22,  65    

m (1/11) 19,   56,  94 26,  80,  53 69,  34,  171   

T (1/17) 29c, 58,  29 41c, 82,  41 -,   104,   53 67,  -,  65 

 

Table 3. Equal temperaments derived from a sample of 5-limit approximant ratio matches 

 

The table includes a selection of well-known, low-cardinality equal temperaments which 
provide good approximations to 5-limit just intonation. 53edo, which is particularly accurate 
as judged on this criterion, appears twice in the table. 

In the case of 29edo and 41edo the meantone and schismic versions of the temperament differ 
in the number of steps assigned to the major third. The ‘meantone’ versions (marked with the 
letter ‘c’) can alternatively be regarded as 3-limit temperaments, in which guise they also 
appear in Table 2. All other temperaments in the table are defined by patent vals. 

The octave cardinalities are described as ‘minimal’ because of the possibility of integer 
subdivision. Note, however, that 29edo and 58edo (as defined by 5-limit patent vals) are not 
related in this simple way, since they differ in their tuning of major thirds. 

The three temperaments represented by the number 12 are the same: in this case the 
categorisation as meantone, diaschismic or schismic does not yield distinct temperaments 
since 12edo is a member of all these families. 

The two dashes in Table 3 indicate incompatible requirements – for example that the major 
third and the large tone should be tuned to a ratio of both 17:9 (approximant-matching) and 
2:1 (meantone family). 

The sets of numbers appearing in the cells of Table 3 carry suggestions of regular patterns, 
which we shall now investigate by considering the complete set of ETs for which given pair 
of source intervals are both approximant-matched and fairly accurately tuned. 

Suppose the source intervals have approximants �� = ��/�� and �� = ��/�� expressed as 
reduced fractions. Approximant-matching equates their tempered gauges (here expressed in 
step units): 

���
� =

���
�

��
= 	

���
�

��
= ���

� 																																																																																																														(34)	

which implies 

���
� ���� = ���

� ����																																																																																																																						(35)			

���
� =

�	��	��	

GCD(��,��	)	GCD(��,��	)
																																																																																											(36)			

where m is some positive integer. In anticipation of the analysis of bimodular commas, it is 
convenient to express this result in terms of a rational multiplier ��	for the interval pair 
(��,��): 



��(��,��) = 	
LCM (��,��)

GCD(��,��	)
		 =

	��	��	

GCD(��,��	)	GCD(��,��	)
																																												(37)			

in terms of which 

���
� =

�	��(��,��)

��
																																																																																																																		(38)			

It then follows that 

���
� =

���
�

��
=

�	��(��,��)

����
																																																																																																							(39)			

If �� and �� are reasonably accurately tuned the temperament step size s is approximately  

� =
	��

���
�

≈
	��

���
�

=
	1

���
�
																																																																																																																(40)			

and the number of steps representing the octave is therefore approximately 

o� =
o

�
≈

�

�
ln2	 ���

� 	 = 	
�
�
ln2	 �	��(��,��)

	����
																																																																								(41)			

Thus the octave cardinalities o� of the temperaments generated from �� and �� can be expected 
to cluster round a sequence of values which are integer multiples of a number close to 

	
�

�
ln2

	�� (��,��)

����
. This is borne out by the following examples. 

The following examples explore some of these temperament groups in more detail. 

Example: Aristoxenean equal temperaments 
Temperaments which approximant-match f and F (and consequently temper out the 
Pythagorean comma) have 

	o� ≈
�

�
ln2	 �	/(

�

�
.

�

�
) = 12.13�																												(� = 1,2,… )																																		(42)	

These temperaments have octave cardinalities which are multiples of 12. 

Example: Escapade equal temperaments 
Temperaments which approximant-match f and M (and consequently temper out the 
escapade comma) have 

		 o� ≈
�

�
ln2	 �	/(

�

�
.

�

�
) = 21.83	�																								(� = 1,2,… )																																			(43)		

        ≈ 21.83, 43.67, 65.50, ... 

Temperaments exploiting this match include 22edo, 43edo, 44edo, 65edo and 66edo. 

Example: meantone equal temperaments 
Temperaments which approximant-match f and m7 (and consequently temper out the 
syntonic comma) have 

	 o� ≈
�

�
ln2 	�	(

�

�
)/(	

�

�
.

�

�
) = 2.43	�																			(� = 1,2,… )																																			(44)			

              ≈ 2.43, 4.85, 7.27, 9.70, 12.13, 14.55, 16.98, 19.41, 21.83, 24.26, 26.69, 29.11, 31.54, ... 

These are meantone temperaments, which are supported by the following edos and 
multiples thereof: 5, 7, 12, 17, 19, 22(meantone), 26, 29(meantone) and 31. 



Errors in bimodular approximants 
An analysis of the errors in bimodular approximants provides a useful basis for understanding 
their relationships with equal temperaments and commas. 

Absolute and fractional errors in bimodular approximants 
Errors in bimodular approximants can be analysed using the Taylor series for		tanh�� �  and 
tanh�, from which the following expressions are derived: 

�

�
=

�

�
= 1 − �

�
�� − �

��
�� − �(��)																				 	 	 	 	 						(45)	

													= 1 −
�

�
�� +

�

��
�� − �(��)																																																																																					(46)	

� =
�

�
= 1 +

�

�
�� +

�

�
�� + �(��)																																																																																				(47)	

													= 1 +
�

�
�� −

�

��
�� + �(��)																																																																																					(48)	

From eqn 45, the fractional error introduced by replacing the interval � by its approximant � 
is 

����(�) =
�

�
− 1 = −

1

3
�2 −

4

45
�4 − �(�6)																																																																					(49)	

In the following analysis we shall work to third order in � and take the term �(��) as read. 
Accordingly we write  

����(�) ≈ −
1

3
�2																																																																																																																				(50)	

Table 4 shows the errors for some low-order 5-limit superparticular intervals expressed in 
cents and as fractions of the interval, with the fractional error estimates –⅓ ��	shown for 
comparison in the last column. 

Interval 
Freq. 
ratio 

Approxi-
mant � 
(dNp) 

Approxi-
mant � 
(cents) 

Just 
interval  
� (cents) 

Error 
(cents) 

Fractional 
error 
����(�) 

Fractional 
error 
estimate 

Octave 2/1 1/3 1154.156 1200.000 -45.844 -0.03820 -0.03704 

Perfect fifth 3/2 1/5 692.494 701.955 -9.461 -0.01348 -0.01333 

Perfect fourth 4/3 1/7 494.638 498.045 -3.407 -0.00684 -0.00680 

Major third 5/4 1/9 384.719 386.314 -1.595 -0.00413 -0.00412 

Minor third 6/5 1/11 314.770 315.641 -0.871 -0.00276 -0.00275 

Large tone 9/8 1/17 203.675 203.910 -0.235 -0.00115 -0.00115 

Small tone 10/9 1/19 182.235 182.404 -0.169 -0.00092 -0.00092 

Semitone 16/15 1/31 111.693 111.731 -0.039 -0.00035 -0.00035 

Chroma 25/24 1/49 70.663 70.672 -0.010 -0.00014 -0.00014 

 

Table 4. Approximant errors for low-order 5-limit superparticular intervals 

 

The accumulated approximant error for all superparticular intervals is 

lim
�→	�

�
1

3
+

1

5
+

1

7
+ ⋯ +

1

2N − 1
−

1

2
ln	N	�																																																																							(51)	

				=
�

�
γ + ln2 − 1 = − 0.018245...					 	 	 	 	 	 								(52)	

dineper, or –63.173 cents, where  

� = 0.57721566... is the Euler-Mascheroni constant 



About 73% of this error is accounted for by the error in the octave. 

In view of the simplicity of the expression defining approximants, their accuracy is 
remarkable, though, as Table 4 shows, it is not sufficient for the precise calculation of 
absolute interval sizes. 

The main value of approximants is in identifying approximate whole-number ratios between 
just intervals. For a pair of similarly sized intervals this ratio is more accurately approximated 
than the intervals themselves, due to a partial cancellation of errors. In the context of equal 
temperaments, intervals derived from approximants can also benefit from renormalisation – 
the adjustment of the scale to produce an exact match to an interval such as the octave. 

Error in the ratio of two approximants 
Here we examine the error involved in estimating the ratio of two intervals using the ratio of 
their approximants. The fractional error in replacing the true interval ratio ��/�� with the 
approximant ratio ��/�� is found (using eqns 45 and 47) to be 

������(��,��) = 	
��/��

��/��
	− 1 =

��

��
		

��

��
	− 1																																																																								(53)	

																							≈ �1 −
�

�
	��

�� �1 +
�

�
	��

�� − 1																																																																							(54)	

																							= − �

�
	(��

�− 	��
�) = − �

�
	(�� + 	��)(�� − 	��)																																														(55)				

to third order in �� and ��. 

ε�������
1

,�
2
� can also be expressed in terms of 	�� and 	�� using eqn 48, and this yields a 

somewhat more accurate approximation because of the smaller size of the neglected fourth 
order terms: 

	������(��,J�) ≈ − �

�
	(��

�− 	��
�) = − �

�
	(�� + 	 ��)(�� − 	��)																																																		(56)							

A comparison of eqns 50 and 55 illustrates how, in estimates based on approximants,  partial 
error cancellation produces a smaller fractional error for interval ratios than for absolute 
intervals. The error in the ratio estimate increases with both interval sum and interval 
difference. 

Error when a pair of approximants are scaled to tune their sum pure 
Suppose we take the approximants �� and �� of a pair of intervals 	�� and 	�� and scale them 
both by the same factor (thus preserving their ratio) in such a way as to tune their sum pure. 
The error in the smaller interval is then found to be 

�����(��,��) ≈
�

�
	����(�� − 	��)																																																																																							(57)	

and the error in the larger interval is just the negative of this. 

As with ��������
1

,�
2
�, the analogous expression in terms of	�� and 	�� is somewhat more 

accurate: 

�����(��,��) ≈
�

�
	��	��(�� − 	��)																																																																																									(58)	

Matches of this type, which we shall term sum-normalised, tend to produce high accuracy 
because the residual error after normalisation is shared equally between the two intervals. 

Example: 12edo approximant match (f,F) 
12edo matches the interval pair (f, F) with (��,��)	= (1/7,1/5), tuning the sum interval (the 
octave) pure. The error estimate (eqn 57) for the perfect fourth (which is the negative of 
the error estimate for the perfect fifth) is 



 

�����(f,F) ≈
�

�
�

�

�
� �

�

�
� �

�

�
−

�

�
� = 	0.0005442… 	dNp	 ≈ 	1.88	cents	

 (or 1.98 cents using the more accurate eqn 58). The true figure is 1.96 cents. 

Error when a pair of approximants are scaled to tune the larger interval pure 
Suppose now we scale �� and �� in such a way that the larger interval �� is tuned pure. Then 
the error in the smaller interval is, from eqn 55 

��(��,��) ≈
�

�
	��(�� + 	��)(�� − 	��)																																																																															(59)	

Alternatively 

��(��,��) ≈
�

�
	��(�� + 	��)(�� − 	��)																																																																																				(60)	

Matches of this type have lower accuracy because the error is entirely carried by the smaller 
interval. 

Example: 12edo approximant matches (M,o) and (M6,o) 
12edo matches (M,o) with (��,��)	= (1/9, 1/3), and (M6,o) with (��,��)	= (1/4, 1/3), in 
each case tuning the larger interval (o) pure. The error estimate (eqn 58) for the major 
third is 

��(M ,o) ≈
�

�
�

�

�
� �

�

�
+

�

�
� �

�

�
−

�

�
� ≈ 	0.003658… 	dNp	 ≈ 	12.67	cents	

(or 13.86 cents using the more accurate eqn 60). The true figure is 13.69 cents. 

The error estimate for the major sixth (or minus the error estimate for the minor third) is 

��(M �,o) ≈
�

�
�

�

�
� �

�

�
+

�

�
� �

�

�
−

�

�
� ≈ 	0.004051… 	dNp	 ≈ 	14.03	cents	

 (or 16.18 cents using the more accurate eqn 60).The true figure is 15.64 cents. 

Bimodular commas 
As a consequence of the near-rational interval relationships implied by approximants, any 
pair of source intervals can be used to define a comma. 

Given two intervals 	�� and	�� (with 	�� < ��) and their approximants	�� and	��, we define the 
bimodular residue as the difference between their gauges: 

��(��,��) = �� − �� =
��

��
− 	

��

��
																																																																																								(61)	

Since for source intervals of ordinary size gauges are close to unity, ��(��,��) will typically 
be small. Using eqn 47 we find (to third order) 
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�− 	��
�) =

�

�
	(�� + 	��)(�� − 	��)																																																									(62)	

This is identical, apart from the sign, to the third order expression obtained above for 
ε�����(��,��), and this can be understood by noting that 

ε�����(��,��) =
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where the multiplier ��/��  introduces only a fourth order correction. 

The analogous approximation for ��(��,��) in terms of  �� and	�� is somewhat more accurate: 

��(��,��) ≈
�
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	(��

�− 	��
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�

�
	(�� + 	 ��)(�� − 	��)																																																														(64)	



We take as an example the bimodular residue for the combination of the fourth and the fifth, 
which is more familiar as the Pythagorean comma: 

��(f,F) ≈ 5F − 7f =
�

�
	(f + F)(F − f)																																																																															(65)	

This estimate evaluates to 23.56 cents, close to the accurate value of 23.46 cents. 

By an accident of scaling (100/(3×3462.468) = 0.009627 ≈ 1/100), if  �� and	�� are expressed 
in 12edo semitones, ( �� + ��)(	�� − ��)	is close to the size of the bimodular residue in cents. 
For example, setting  �� = f ≈ 5,  ��= F ≈ 7 semitones gives  ��(��,��) ≈  (5+7)×(7–5) = 24 
cents. This provides a quick method for estimating bimodular residue sizes. 

Commas are conventionally defined as intervals with rational frequency ratios for which the 
prime exponents do not all share a common factor. Accordingly we convert the bimodular 
residue to a bimodular comma, �(��,��), in which this property is achieved by applying a 
suitably chosen rational multiplier ��(��,��):  

�(��,��) = b�(��,��)	b�(��,��)																																																																																										(66)	

If the approximants are expressed as irreducible fractions 

�� =
��

��
,																											�� =

��

��
																																																																											

then 

��(��,��) = 	
LCM (��	,��)

GCD(��,��	)
																																																																																																		(67)			

(In rare instances a further multiplier is required to avoid a common factor in the prime 
exponents; b(T,o) is such an instance, where a factor of ½ must be applied.) 

As an example we consider the pair of intervals: 

 �� = 4/3 = f,  �� = 1/7  (perfect fourth) 

 �� = 9/5 =	m�,   �� = 2/7  (minor seventh) 

for which 

��(��,��) =
��

��
	− 	

��

��
=

�

�
	m� − 7f																																																																																				(68)			

��(��,��) = 	
LCM (1,2)

GCD(7,7)
=

2

7
																																																																																														(69)			

�(��,��) = b�(��,��)	b�(��,��) = m� − 2f																																																																					(70)	

The statement that a bimodular comma �(��,��) (or equivalently the corresponding bimodular 
residue) is tempered out by an equal temperament is equivalent to the statement that	��	and �� 
are approximant-matched in the temperament. This can be seen by noting (using eqn 19) that 

��(��,��) = 0	 					
	

⇔ 					��
� = 	 ��

� 																																																																																								(71)	

Many commas of the bimodular type feature in established temperament theory, which is to 
say that there are many instances of approximant-matched intervals in known temperaments. 
In the example above, �(�,m�) is the syntonic comma, c. Some more examples are listed 
below.5 

Examples – 3-limit approximant commas: 
b(f, o) = |-11 7> = 2187/2048  (Pythagorean chroma, 113.685 cents) 

b(F, o) = |8 -5> = 256/243  (limma, 90.225 cents) 



b(T, o) = b(F, m7
-) = |27 -17> (17-tone comma, 66.765 cents) 

b(T, F) = |46 -29> (sub-limma, 43.304 cents) 

b(f, F) = |-19 12> = 531441/524288  (comma of Pythagoras, 23.460 cents) 

b(T, f) = |65 -41> (41-tone comma, 19.845 cents) 

Examples – 5-limit approximant commas: 
b(M6, o) = |3 4 -4> = 648/625 (major diesis, 62.565 cents)  

b(M, M6) = |18 -4 -5> = 262144/253125 (passion comma, 60.611 cents)  

b(f, M6) = |-14 3 4> = 16875/16384 (negrisma, 51.12 cents)  

b(M, o) = |7 0 -3> = 128/125 (diesis, 41.059 cents) 

b(m, F) = |-16 -6 11> (sycamore comma, 37.721 cents) 

b(M, F) = |13 5 -9> (valentine comma, 32.952 cents) 

b(F, M6) = |5 -9 4> = 20000/19683  (minimal diesis, 27.660 cents)  

b(f, m7) = |-4 4 -1> = 81/80 (syntonic comma, 21.506 cents) 

b(M, f) = |32 -7 -9> (escapade comma, 9.492 cents)  

b(t, D4) = |8 14 -13> (parakleisma, 5.292 cents) 

b(m, M) = |-29 -11 20> (gammic comma, 4.769 cents) 

b(X, f) = |23 6 -14> (semisuper comma, 3.338 cents) 

b(s, t) = |-104 -7 50> (2.001 cents) 

b(c, X) = |71 -99 37> (raider comma, 0.062 cents) 

b(c, D) = |161 -84 -12> (atom of Kirnberger, 0.015 cents) 

Examples – 7-limit approximant commas: 
b(X, 7/3) = |2 -3 0 1> = 28/27 (Archytas’ 1/3 tone, 62.961 cents) 

b(7/5, o) = |1 0 2 -2> = 50/49 (jubilisma, 34.976 cents) 

b(m, 7/4) = |-5 -3 3 1> = 875/864 (keema, 21.902 cents) 

b(7/5, M6) = |0 -2 5 -3> = 3125/3087 (gariboh comma, 21.181 cents) 

b(t, 12/7) = |-3 11 -5 -1> = 177147/175000 (21.111 cents) 

b(9/7, M6) = |0 -5 1 2> = 245/243 (octarod, 14.191 cents) 

b(7/6, m6) = |6 3 -1 -3> = 1728/1715 (Orwell comma, 13.074 cents) 

b(8/7, 7/5) = |-15 0 -2 7> 823543/819200 (quince, 9.154 cents) 

b(8/7, F) = |-10 1 0 3> = 1029/1024 (gamelisma, 8.433 cents) 

b(9/7, 7/5) = |0 -8 -3 7> 823543/820125 (7.200 cents) 

b(M, 7/5) = |6 0 -5 2> 3136/3125 (parahew, 6.083 cents) 

b(T, 10/7) = |10 -6 1 -1> 5120/5103 (hemifamity, 5.758 cents) 

b(s, 35/27) = |-16 1 5 1> 65625/65536 (tertiapoint, 2.349 cents) 

b(s+, 7/6) = |-1 -7 4 1> 4375/4374 (ragisma, 0.396 cents) 

 

The source interval pairs with frequency ratios 

										(��,��) = 	 �
� + 1

� − 1
,
� + 2

� − 2
�																																		(� = 3,4,5,… )																						(72)	

produce an infinite sequence of bimodular commas with frequency ratios 



�
� + 2

� − 2
� /�	

� + 1

� − 1
�

�

= 	
�(�� − 3) + 2

�(�� − 3) − 2
																			(� = 3,4,5,… )																					(73)	

The sequence consists mostly of superparticular commas (with exceptions when m is a 
multiple of 4). Its first few members are: 

 
5/4 (major third)       27/25 (semitone maximus)   28/27 (Archytas’s 1/3 tone)   

50/49 (jubilisma)    81/80 (syntonic comma)    245/243 (octarod, minor BP diesis) 

176/175 (valinorsma) 243/242 (neutral third comma)  325/324 (marveltwin)       847/845 (cuthbert) 

540/539 (swetisma)   676/675 (island comma)  833/832     2025/2023 

1216/1215 (Eratosthenes) 1445/1444     1701/1700  3971/3969  

2300/2299   2646/2645   3025/3024 (lehmerisma) 6877/6875 

3888/3887  4375/4374 (ragisma) 

Other examples of superparticular bimodular commas are the perfect fourth and the large 
tone: 

b(F, 9) = 4/3 = f,  b(o, P12) = 9/8 = T 

A bimodular comma has a prime-limit which is the larger of the prime-limits of its source 
intervals, and in tonal space it is coplanar with the source intervals and the origin. 

The sizes of bimodular commas can be estimated from the rule of thumb for bimodular 
residues derived above (in the simplest and therefore most important cases the bimodular 
residue and comma are often one and the same). For pairs of source intervals of octave size 
and less this yields a range of zero to 144 cents, with an average of 48 cents. This result 
provides a degree of explanation for the size range of the commas which have been found to 
be useful in temperament theory. 

When bm has a denominator greater than one the bimodular comma is both smaller and of 
lower complexity than the corresponding bimodular residue – both desirable qualities in the 
context of temperaments. This effect has already been demonstrated in the case of the 
syntonic comma. Another striking example is provided by the bimodular comma formed 
from the syntonic comma (c = 81/80) and the dieses (D = 128/125).Using the approximants 
given in Table 1 we find 

 br(c,D) = (11×23/3)D  – (7×23)c 

bm(c,D) = LCM(3,1) / GCD(11×23,7×23) = 3/23 

 b(c,D) = bm(c,D) br(c,D) = 11D – 21c = 2161 / 384 512 

The factor 23 shared by the denominators of these source intervals’ approximants, combined 
with the small size of those intervals, means that b(c,D) is both extremely small (a mere 
0.01536 cents) and expressible simply in terms of other small 5-limit intervals. In terms of 
the syntonic comma (c), the Pythagorean comma (p = 3c – D) and the schisma (σ = p – c), 

 b(c,D) = 12c – 11p = c – 11σ = p – 12σ 

The small size of b(c,D) means that these intervals, together with the diesis and the 
diaschisma (d = c – σ), are tuned very accurately by the steps of a miniature equal 
temperament (of which 612edo is one realisation) approximating a scale of schismas or grads 
(1 grad = p/12): 

 σ : d : c : p : D ≈ 1 : 10 : 11 : 12 : 21 

The interval we have notated as b(c,D) has been studied since the 18th century and is known 
as the atom of Kirnberger. An explanation for its small size, based on arguments similar to 
those presented above, has been published by Page.6 



A factor 23 is in fact present in either the numerator or the denominator of the approximant of 
every 5-limit interval which vanishes in 12edo if the temperament is defined using the patent 
val. A proof of this can be constructed from i) the fact that every such interval can be 
expressed as a linear combination of c and D with integer coefficients, and ii) the rule for 
combining approximants for interval sums and differences (eqn 23). It is also straightforward 
to show that this property is shared by any interval which is tempered to a multiple of 11 
steps by 12edo. For example � = 24, which has � = 23/25 and is tempered to 55 steps. 

This result relates to the following theorem, which is stated here without proof: 

When plotted on a tonal lattice based on any set of primes, points for which jg = 0 (mod 
p), where j/g is the reduced approximant and p is an odd prime not in the basis set, lie on a 
regular sub-lattice having a unit cell with hypervolume (p – 1)/2 or (rarely) a factor 
thereof. 

In the above example p = 23, (p – 1)/2 = 11, and planes of the sub-lattice happen to align with 
the pitch contours of patent 12edo. 

Graphing matched approximant ratios in ETs: Jacana diagrams 
A space of real numbers (�,�), with � > |�|, in which	� = �/� is interpreted as a bimodular 
approximant, provides a natural coordinate system for studying equal temperaments (with 
axes are rotated by 45 degrees relative to the (�,�) system illustrated in Figure 1). The 
subspaces in which	� and � are confined to integers or rationals include representations of all 
just intervals, and the gradient (� = �/�) of a line joining the origin to the point (�,�)	is the 
approximant of the corresponding interval. 

Vertical lines of points in this space, (�,�) (j = 0, 1, 2,...), correspond to the sequences of 
approximately equally spaced intervals that we have termed near-equal progressions. 

Near-equal progressions are related to a general principle which can be stated thus:  

Just intervals which are tempered to	� steps of an equal temperament correspond to points 
with rational � coordinate and integer � coordinate in a certain region of (�,�) space. 

Suppose that an equal temperament is defined by dividing an interval ��, such as the octave, 
into	�� equal steps.	�� is then the cardinality of the ET, and its step size is 

 � = ��/��	                                         (74) 

The interval ��, with approximant ��, is represented in	(�,�) space as a point	(��,��), where 

 �� = ��/��	                                               (75) 

The general interval �, with approximant	�, is tempered to �	steps of the temperament: 

 	��� = �	                              (76) 

 	�′= ��	                                 (77) 

and the tempered interval	�′ is represented by a point	(�′,�′), where 

 � = �/�                                 (78) 

is the interval’s tempered gauge (���).  

The temperament error, measured in step units, is 

 �̂ =
��

�
−

�

�
= 	 ��� − �� = � − ��	                                (79) 

where ��	is the true interval size in step units: 

 	�� =
������ �

�
                                  (80) 

Thus 



 	�̂ = � −
������ �

�
                                        (81) 

 � =
������ �

�
+ 	�̂                    (82) 

We assume in this analysis that �′ is tuned to the nearest whole step of the temperament 
(while acknowledging that other ET tuning policies, including those based on vals, are 
possible). Under this assumption the magnitude of the temperament error is never more than 
half a step: 

 −
�

�
< �̂ ≤

�

�
                                         (83) 

where equality has been excluded at the lower end of the range in order to define the 
temperament unambiguously. 

Points representing tempered intervals with an error of no more than half a step will be 
contained in a region – the tempered domain – bounded on the upper left and lower right by 

the two branches of the �̂ = −
�

�
  curve 

 � =
������ �

�
−

�

�
                           (84) 

and on the upper right and lower left by the two branches of the �̂ =
�

�
  curve 

 � =
������ �

�
+

�

�
                           (85) 

where	� runs between –1 and 1 and the � coordinate is given by 

 � = �/�                                 (86) 

Here � is treated as a continuous variable, but the error limit will apply to all points in the 
tempered domain, including the subset of points having integer � which constitute our main 
focus. 

Lines of zero error (�̂ = 0) are defined by 

 � =
������ �

�
                     (87) 

This condition is met trivially on the line	� = 0 and on the zero error curve defined by 

 � =
�

�
=

�

����(��)                    (88) 

The two lines intersect at right angles at a saddle point of the error function located at 
(�,�) = (��,0), where 

 �� =
�

�
                             (89) 

The borders of the tempered domain (shown in black) and the two zero error lines (shown in 
grey) are plotted for 12edo in Figures 3 and 4. The Jacana diagram (named for its passing 
resemblance to the foot of that bird) is a graphical representation of an equal temperament in 
which each interval is tuned to the nearest whole step. An interval �	with approximant � is 
represented on the diagram by a line of slope � passing through the origin. The number of 
steps (��′= �) to which �	is tempered may be read off from the point at which this line 
intersects a horizontal line representing an integer j-value within the tempered domain. 

The Jacana diagram is an aid to understanding interval relationships and errors in nearest-step 
equal temperaments within an approximant-based framework. It shows that approximant-
matched intervals in an ET do not occur haphazardly, but form vertical lines lying within a 
contiguous domain of the (�,�) plane, the central region of which contains a series of 
unbroken chains of matched intervals with consecutive integer �	values. 



 
                           Figure 3. Jacana diagram for nearest-step 12edo 

 

The following general properties of Jacana diagrams can be noted by inspection or proved 
without difficulty. 

The tempered domain has four tapering ‘toes’ extending from a region centred on the point 
(��,0). 

The gradient of the �̂ = −
�

�
	curve at j = 0 is tanh(�/2), this being the approximant of half 

the step interval. 

The line representing interval � crosses the boundaries of the tempered domain at two points, 
which for |�|≥ tanh(�/2)	are separated by distance 1 in the �	dimension and 1/|�| in the 
�	dimension. (Except where |�| takes values near 0 or 1, therefore, 1/|�| gives a rough 
measure of the varying width of the toes which extend either side of the � axis.) 

Points lying on any vertical line (�,�)	(� = 0,1,2,… ) lying within the tempered domain map 
to intervals which are approximant-matched in the temperament, with tempered gauge � 
steps (where in cases of practical interest �	is often an integer). Instances of such matches in 
12edo are examined below. 



The tempered domain may be subdivided by plotting contours for errors of less than half a 
step (as in Figure 4). Contours for errors of ±1.5, ±2.5... steps may also be plotted, which 
divide the space into domains in each of which j (an integer determined as in the tempered 
domain) is offset from ��′ by ±1, ±2... In each of these domains every just interval is 
represented exactly once. For just intervals with reduced approximant ��/��, the value of 
�	corresponding to integer �	will be an integer in every ��’th domain. 

The toes of the tempered domain are threaded by two zero-error lines, one horizontal 
(expressing the exact tuning of the unison), the other curving towards 45 degree asymptotes 
at large |�|, and approximated by 

 � ≈ �� + �

�
	���																			(� ≪ 1)                            (90) 

 � ≈ |�|�1 + 2������								(� ≈ 1)              (91) 

The two zero-error lines cross at the point (gs,0).  

The number of steps, ��′, representing the true size of the interval 	� may be read off from the � 
coordinate of the point at which the line with slope � intersects the zero error curve. 

The point (��,��) representing the interval which is normalised (tuned true) in the 
temperament lies on the �̂ = 0 curve. 

The form of the diagram depends only on the step size, �. 

The zero error curve has the same shape for all ETs, scaling with 1/� in both dimensions.  

�� is somewhat greater than �� in fractional terms, as can be seen by noting that 
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and therefore 
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In the case of 12edo, 
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The point (���,���) at which the �̂ = −
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�
	curve is stationary with respect to changes in � is 

approximated by 
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with ���
 and ��� satisfying the exact relationship 

 ���
� = ���(��� − ��)                           (96) 

In the case of 12edo, 

(���,���)	≈	(37.357,	10.102)	 	 																			 	 	 	 								(97)	

For ETs with cardinality �� greater than a critical value,	�� exceeds  ���. The critical value is 

 ��_���� =
�√�

�
(

�

��
� +

�

�
) + �(��

�)                                (98) 

For �� less than ��_���� the points (��,�) lie within the tempered domain for all |�|≤ ��, and 
the corresponding intervals therefore form an approximant-matched set with tempered gauge 
��. For octave-based ETs (��= o = 0.346574 ...)                                 (99) 

 ��_���� ≈ 	33.2                      (100) 



Thus for octave-based ETs with cardinality 33 or less there is an approximant-matched set 
containing all steps of the temperament up to and including the octave (and in practice a little 
beyond). 

For 	�� > 	��_���� this approximant-matched set splits into three disjoint portions (if negative 
intervals are included), but the central portion can be shown to include all �	satisfying 

 |�|≤ ���� =
��

�(�����)
                                  (101) 

where for octave-based ETs (��= o = 0.346574..., �� = 1/3), 

���� ≈ 13.09                        (102) 

Thus for octave-based ETs up to and including 33edo the approximant-matched set defined 
by the tempered gauge go includes all steps up to the octave, and for higher cardinalities it 
includes at least the first 13 steps. In practice it is found that 34edo matches the first 17 steps, 
and the number of matches falls with increasing octave cardinality before levelling off at 13 
steps for 54edo and above. 

As a corollary of this result, 3steps of any octave-based temperament represent the interval 
whose approximant is the reciprocal of the octave cardinality (provided the cardinality is 3 or 
greater). Examples: 

3 steps of 4edo make a major sixth, M6 = 5/3 (� = 1/4). 

3 steps of 15edo make an 8/7 (� = 1/15). 

3 steps of 17edo make a large tone, T = 9/8 (� = 1/17). 

3 steps of 19edo make a small tone, t = 10/9 (� = 1/19). 

3 steps of 31edo make a diatonic semitone, s = 16/15 (� = 1/31). 

3 steps of 41edo make a 21/20 (� = 1/41). 

3 steps of 49edo make a chroma, X = 25/24 (� = 1/49). 

Points (�,�) (where � and � are integers) lying close to the zero error curve represent 
intervals tuned with exceptional accuracy by the temperament, with an error of the order of 
one percent of the ET step. In the region where	� ≈ �� and  � << 1 it follows from eqns 81 
and 90 that 

	
���

��
≈ −

�

�
��		 					 	 						 	 	 	 						 	 						(103)	

For a given integer �, the point with integer �	nearest the zero error curve will have |Δ�|≤
�

�
, 

and the magnitude of the associated error (in step units) is therefore limited by 

	 |�̂|≈
�

�
��|Δ�|<≈ 	

�

�
��							 	 	 	 						 	 					 						(104)	

For intervals smaller than an octave (�	< 1/3) the maximum error is about 0.037 steps and the 
mean error (based on uniformly distributed and independent �	and|��|) about 0.006 steps. 

For the temperament jo-edo, sub-octave just intervals in this accurately tuned set have integer 
�	values between ��	and ��. The number of such points is  

⌊�� − ��⌋ = ��
�

��
−

�

��
� ��� = ��3 −

�

���
� ��� = ⌊0.11461��⌋												 	 						(105)	

where ⌊�⌋ denotes the floor function, which maps x to the largest integer not greater than x.  

The Benedetti height, ��, of these intervals is no greater than ��
� = 9��

�. Each has an 
octave-complement which is tuned equally accurately.  

Examples include 41/29 in 12edo (5.995 steps), 5/3 (M6) in 19edo (14.002 steps), 8/5 (m6) in 
31edo,  16/11 in 37edo (20.001 steps) and 3/2 (P5) in 53edo (31.003 steps). 



Further reflections on 12edo 
Figure 4 is a close-up of one toe of the Jacana diagram for 12edo. Low-complexity intervals 
are identified in font sizes reflecting their prime limit (5, 7 or 11), and the zero error lines and 
the boundaries of the tempered domain (error = ±50 cents) are supplemented with lines 
representing errors of ±25 cents. Intervals lying to the left and right of the zero error curve are 
tuned flat and sharp, respectively. The matched sets previously identified appear in vertical 
columns with ��� = �. 

In the discussion so far, insights into the accuracy of 12edo as a 5-limit tuning have been 
obtained by considering its most important groups of 5-limit approximant ratio matches –
those with ��� =	35 and 36. The second of these groups also includes an interval, 7/5, which 
casts light on the 7-limit characteristics of 12edo. We now examine these matches more 
closely. 

As a first step we examine octave-based equal temperaments of low cardinality. Such 
temperaments can be derived by approximant-matching the octave to intervals whose 
approximants are reciprocals of small integers – intervals which have a reduced frequency 
ratio for which the difference between the numerator and denominator (the degree of 
epimoricity) is 1 or 2. As a consequence of this property the first eight of them – those with 
approximants 1/2, 1/3, 1/4,... 1/9 (i.e. those with denominators stopping 2 short of 11) – are 
all 7-limit intervals. Table 5 shows the ETs derived by approximant matching these intervals 
to the octave, with the error in the matched non-octave interval indicated in the last column. 

The octave cardinalities increase in the sequence 2, 3, 4,... 9 except where reduced by 
common factors between the denominators of the matched approximants. The first two 
entries in the table are included for completeness and will serve no further purpose. 

Returning to 12edo, we recall that its accuracy in the 3-limit is ensured by a sum-normalised 
match based on the source interval pair (f, F) with tempered gauge 35, while its 5 and 7-limit 
credentials are closely bound up with the matched set (M, 7/5, M6, o) which has tempered 
gauge 36. 

These sets can be related by noting that the first of them links a pair of consecutive 
superparticular intervals, 3/2 and 4/3. Such interval pairs have frequency ratios of the form 

 (��,��) = 	 �
�

���
,

���

�
�             (106) 

with approximants 

 (��,��) = 	 �
�

����
,

�

����
�             (107) 

Their sum has frequency ratio (� + 1)/(� − 1)	and approximant 1/�. 

Approximant-matching this pair of intervals and normalising their sum yields a temperament 
which divides the sum interval into 4�	equal parts. In this temperament family the sum 
interval has tempered gauge 4��	and the source intervals have tempered gauge	4�� − 1. 

In the case of 12edo, � = 3, the cardinality is 4� = 12	and the tempered gauges are 4��= 
36 for the octave and 4�� − 1 = 35 for the fourth and the fifth. 

We note next that the octave cardinality (12) has factors 2, 3 and 4, making12edo a superset 
of 2edo, 3edo and 4edo. 12edo therefore inherits the approximant matches for these lower-
cardinality temperaments, which, as we have seen, guarantee acceptable tuning for the major 
and minor thirds and sixths and the 7/5. 

 



 
 

     Figure 4. Jacana diagram for nearest-step 12edo (detail) 



Interval Approximant Derived ET Error (cents) 

Tritave = P12 = 3/1 1/2 2edo -102.0 

Octave = o = 2/1 1/3 1edo 0.00 

Major sixth = M6 = 5/3 1/4 4edo 15.6 

Perfect fifth = F = 3/2 1/5 5edo 18.0 

7/5 1/6 2edo 17.5 

Perfect fourth = f = 4/3 1/7 7edo 16.2 

9/7 1/8 8edo 14.8 

Major third = M = 5/4 1/9 3edo 13.7 

 

Table 5. Low-cardinality octave-based ETs derived by approximant-matching with the octave 

 

These arguments provide an explanation for the degree to which 12edo approximates the 3-
limit (very accurately), the 5-limit (tolerably well) and the 7-limit (somewhat less well). 

Finally, we identify two further members of the temperaments family parameterised by	�. 
Setting � = 4 divides the major sixth into 4� = 16 equal parts, with accurate fourths and 
major thirds. This is an adjusted version of 22edo. Setting	� = 5 divides the fifth into 
4� = 20 equal parts, with accurate major and minor thirds. This is Carlos gamma, or 
adjusted 34edo. 

Christmas tree diagrams 
The Christmas tree diagram provides another way of graphing the space of points (�,�) to 
visualise the properties of an equal temperament. 

This diagram plots � = �/� against � for a suitable range of positive integer values of 	� and 
�, using logarithmic scales for both axes. 

Points with the same approximant �, and therefore the same interval and frequency ratio, lie 
on a horizontal line, with interval size increasing up the page. Points on the horizontal line 
correspond to successive integer values of �, their � values being multiples of the reduced 
approximant denominator. In the examples the points are labelled with the associated 
frequency ratios up to prime limit 13, and plotting is selective for intervals greater than the 
octave. 

Points with the same � value lie on vertical lines which correspond to vertical lines on the 
Jacana diagram (near-equal progressions). 

Points with the same	� value lie on lines which slope from top-left to bottom-right. 

The approximants � of the set of points with � ≤ � form the Farey sequence of order �. 

The diagram is decorated with coloured circles and lines to represent relationships in an equal 
temperament. In the examples the temperament is defined on the same convention as the 
Jacana diagram – the nearest-step basis. 

Figure 5 is a Christmas tree diagram for 12edo. This example includes, on the right hand side, 
grey lines marking the boundaries of the tempered domain. Points within this domain are 
ringed with circles of four pastel colours representing tempered gauges of 34, 35, 36 and 38 
steps, respectively. A vertical line in the same colour is drawn through the points associated 
with each tempered gauge. 

To the left of these points, other points representing the same set of intervals are also ringed 
in the same or related colours. 



A striking feature of the diagram is the symmetrical disposition of groups of coloured circles 
about the lines which form the ‘trunk’ of the tree. Circles of a particular colour lie at equal 
distances on either side of a 45 degree diagonal line of the same colour, the colour coding for 
the tempered gauge which the circled points share. Saturated colour is used for points which 
participate in this mirror symmetry and the associated mirror lines. The mirror line with 

tempered gauge	�� has the formula � = 	 �′� �, and meets its pastel-coloured vertical 

counterpart at the point (�,�) = (�′� ,1). 

 

 
            Figure 5. Christmas tree diagram for nearest-step 12edo 

. 

Prominent in the diagram is a square of yellow-ringed points representing the intervals f, F 
and m7. The mirror-pairing (f, F) and the vertical pairing (f, m7) define the Pythagorean and 
syntonic commas respectively, and these two approximant-matches are sufficient to define 
12edo completely in the 5-limit. The green circles are associated with tempered gauge 36. 
Their abundance is a consequence of this number being rich in factors, as can be seen from 
the theory presented above. 

Christmas tree diagrams for 22edo and 31edo are shown in Figures 6 and 7. In these diagrams 
only mirror pair matches are shown. 

We shall now explore the reasons for the observed characteristics of Christmas tree diagrams, 
including their symmetries. 

 

 

 



 
           Figure 6. Christmas tree diagram for nearest-step 22edo 

 

If a given ET has matches sharing a tempered gauge ��� which factorises as ��� = ����, then 
the points 

 (��,��) = (����,����)                (108) 

 (��,��) = (����,����),                (109) 

where �� and �� are positive integers, represent intervals belonging to the matched set, 
provided the points 

 ����,���� ≡ ����,���                 (110) 

 ����,���� ≡ ����,���                 (111) 

lie within the tempered domain. This can be seen by noting that 
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=
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=
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���	                 (112) 

and likewise 
��

��
=

���

���  so each of the points represents an interval in the tempered domain. 

If �� is held fixed while ��	ranges over the positive integers, the points (��,��)	are all those 
which lie on the vertical line defined by �� = ����: 

(��,��) = (����,��/��)										(�� = 1,2,… )																															 	 						(113)	

and the points	(��,��)	 are all those which lie on the horizontal line with	�� = ��/��: 

(��,��)	=	(����,��/��)										(�� = 1,2,… )												 	 	 	 						(114)	



 

 
        Figure 7. Christmas tree diagram for nearest-step 31edo 

 

For a given value of �� the points on the horizontal and vertical lines are the reflections of 
each other in the mirror line 

� = ��′= ����	 	 	 	 	 	 	 	 	 					(115)	

and thus satisfy 

�� = �����	 	 	 	 	 	 	 	 	 					(116)	

�� = �����	 	 	 	 	 	 	 	 	 					(117)	

�� = �� = ������� =
����

��� 	 	 	 	 	 	 	 					(118)	

We shall refer to such pairs of points as mirror pairs. The approximants of the members of a 
mirror pair share a numerator � = �� = �� (and can thus be termed diagonal matches) and 
their denominators ��,�� have product ���′. In some cases a point may form a mirror pair 
with itself, in which case we can say that the corresponding interval is self-matched.  

In summary, given a column of points on the Christmas tree diagram, (�,�) = ����,���
� /����, 

representing a set of approximant-matched intervals (where ��� is fixed and ���
�  takes certain 



positive integer values) there is, for every factor	�� of ���, and for every integer multiple �� 
of that factor, another column of points (��,��) = (����,��/��), representing a subset of 
the original interval set in which ���

� = ����	is limited to integer multiples of �� = ���/��. 
Moreover, there is a corresponding row of points obtained by reflecting this column in the 
line � = ����, all these points corresponding to the interval in the matched set represented by 

the point����,���
� /����, where ���

� = ��. 

Points representing approximant-matched intervals can potentially occur in columns for 
which � shares a prime factor with	���. For	� < ��� the number of columns excluded by this 
rule is �(���), where � is the Euler totient function. 

Mirror pairs, being among the simplest approximant matches to be found in an equal 
temperament (in the sense of featuring the smallest integers � and �), tend to be associated 
with some of its most distinctive characteristics.  

Interdependence among approximant-matched interval pairs 

Approximant-matched pair triples 
A study of approximant-matched interval pairs in a given prime limit for a range of ETs 
reveals a marked tendency for them to occur in groups of three, with the participating 
intervals related by addition and subtraction. This observation is formalised in the following 
theorem. 

If in some equal temperament defined by a val, two interval pairs (A,X) and (B,Y) are both 
approximant-matched and have a common difference, X – A = Y – B, then (C,Z) = (Y–X, 
X+B) is also an approximant-matched pair in that temperament. 

Fig 8 is a schematic representation of the interval pairs (A,X), (B,Y) and (C,Z) as vectors 
(monzos) in tonal space, arranged first as directed edges of a tetrahedron, and second as 
directed edges of a an octahedron. 

 

 

 

    

 

 

 

 

 

    Figure 8. Two representations of an approximant-matched triple in tonal space 

 

The signs of the six intervals have been defined in such a way that it is possible for them all 
to be positive, and on the diagrams the size of the interval is measured schematically by 
distance across the page from left to right. In the examples which follow we shall adopt the 
convention that the intervals A, B, C, X, Y and Z are positive. This requires that X < Y < Z, X > 
A, Y > B and Z > C, and as a consequence any six intervals forming an approximant-pair 
triple can always be assigned unambiguously to these symbols. We shall notate the triple  

�(�,�)��
,(�,�)��

,(�,�)��
�, where ��, �� and �� are the tempered gauges for the matches 

in step units. These gauges satisfy �� < �� < 	 ��, as can be seen by noting that ��, �� and 
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�� are the tempered gauges of increasing intervals X, Y, and Z, and gauge is an increasing 
function of interval size. 

In the following proof, by contrast, the intervals are unconstrained except for the stated 
relationship, and in order to highlight the symmetry of the relationships we shall work with 
the negative of B, denoting this by  

�� = − �							

The relationships stated in the theorem can then be expressed (with some redundancy) as: 

� + � = � − � = �								 	 	 							 	 	 	 						(119)	

� + � = � − �� = �			 	 	 	 								 	 	 	 						(120)	

� + �� = � − � = �										 	 	 	 					 	 				 						(121)	

� + �� + � = 0									 	 	 	 								 	 	 	 						(122)	

The common sums and/or differences are (from eqns 119-121): 

� + � = � − �			 	 					 						 	 	 	 							 							(123)	

� + �� = � − �			 	 	 	 	 	 	 	 							(124)	

� + � = � − ��			 	 	 	 	 	 	 	 							(125)	

From eqns 119-122 it follows that 

(� + �)(� + �)(� + ��) 	 = ���		 	 	 	 								 	 							(126)	

Expanding and substituting using eqns 119-121 again (C = Y – X, A = Z – Y, X = Z + ��), 

��� + ���� + XAZ + �(� − �) +  

																			��(� + ��) + (� − �)�� + ���� = ���					 	 				 							(127) 

and simplification followed by division by XYZ gives 

			
�

�
+

��

�
	+

�

�
+

����

���
= 0																																																																																																			(128)		

We now show that an identical relationship is satisfied by the approximants of A, B, C, X, Y, 
Z. Denoting the approximants by lowercase symbols and applying eqn 22 (the summation 
rule) to eqns 119-122 we find 

� + � − � − ��� = 0				                  (129)	

� + � − � − ��� = 0	                      (130)	

� + �� − � − ���� = 0	                        (131)	

− � − �� − � − ���� = 0                           (132)	

and summing the four equations then gives 

− ��� − ��� − ���� − ���� = 0                 (133)	

			
�

�
+

��

�
	 +

�

�
+

����

���
= 0																																																																																																						(134)		

Thus, for intervals related in the way described, the approximants satisfy the same relation as 
the just intervals – somewhat surprisingly considering that eqns 129-132 have extra terms 
when compared to eqns 119-122. 



For a temperament defined by a patent val, the tempered versions of A, B and C have the 
same additive properties as the pure intervals, and therefore satisfy relations of the form 119, 
120 and 121. Thus we can write 

			
��′

��′
+

���′

�� �
	 +

���

���
+

������ ����

����� ��� �
= 0																																																																																											(135)	

If (A,X) and (B,Y) are approximant-matched pairs in some temperament, then 

		
��′

��′
=

�

�
																																																																																																																																		(136)	

		
��′

��′
=

�

�
																																																																																																																																		(137)	

and	to	satisfy	134	and	135	it	follows	that	the	pair	(C,Z	)	must	also	be	matched:	

		
��′

��′
=

�

�
																																																																																																																																		(138)	

Since the proof is indifferent to the sign of the intervals, it follows that whenever an equal 
temperament defined by a patent val has two approximant-matched interval pairs for which 
the sum or difference of one pair is equal to the sum or difference of the other pair, the 
temperament will also have a third matched pair. 

Mirror pair property of intervals featuring in triples 

Another notable feature of triples is that their constituent approximant-matched intervals are 
mirror pairs. 

To understand the reason for this we need the following relationship between the 
approximants a, b, c, x, y, z, which can be proved using a procedure similar to that used to 
derive eqn 134: 

�� − �� + �� − ������� = 0																																																																																											(139)								

Using the notation 

����
� ≡

���

�
=

�� �

�
																																																																																																																						(140)												

����
� ≡

���

�
=

�� �

�
																																																																																																																						(141)												

����
� ≡

���

�
=

���

�
																																																																																																																						(142)												

and in expectation of a result concerning mirror pairs, we define 

��� = ����
� �� = ������/����

� 																																																																																																(143)										

��� = ����
� �� = �� ����/����

� 																																																																																																(144)										

��� = ����
� �� = ����� �/����

� 																																																																																																		(145)									

Comparing eqns 143 and 118 it is evident that (A,X) is a mirror pair if and only if ���is an 
integer (with analogous statements applying to the other pairs). 

Combining eqns 143-145	with	139	we	find	
���

����
� − 	

���

����
� +

���

����
� −

���������

����
� ����

� ����
� = 0																																																																																			(146)												

Applying eqn 22 to this relationship (treating ���/����
� 	etc. as approximants) we deduce that 

the ratios taking the place of the corresponding frequency ratios must satisfy 



�����
� + ���������

� − ���������
� + ����

�����
� − ���������

� + ���������
� − ����

= 1																																																																				(147)		 

Barring	improbable	coincidences,	this	can	only	be	true	if	there	is	wholesale	cancellation,	
which	means,	given	that	����

� 	<	����
� 	<	����

� 	and	the	j		terms	are	positive,	the	numerator	
and	denominator	terms	must	equate	pairwise	as	follows:	

����
� − ��� = ����

� − ���				 																																																																																																					(148)								

����
� + ��� = ����

� + ���																																																																																																						(149)								

����
� − ��� = ����

� + ���																																																																																																						(150)								

This	implies	

��� = ����
� − ����

� 																																																																																																																	(151)								

��� = ����
� − ����

� 																																																																																																																	(152)								

��� = ��� + ���																																																																																																																			(153)								

which,	for	integer	����
� ,	����

� 	and	����
� ,	means	that	���,	���	and	���	are	integers,	and	

consequently	(barring	coincidences)	that	(A,X),	(B,Y)	and	(C,Z)	are	mirror	pairs.	

Examples: 5-limit triples 
The following are some 5-limit triples featuring in well-known ETs, some of which can be 
found in Figures 5, 6 and 7.    

7edo:   [(F, M6)20 (m7, o)21 (m, P12)22]  (���,���,���)	=	(1,	2,	1) 

12edo:   [(F, m7)35(M6, o)36 (t, P12)38]   (���,���,���)	=	(2,	3,	1) 

19edo:   [(m, F)55 (f, M6)56 (t, o)57]   (���,���,���)	=	(1,	2,	1) 

22edo:   [(M, f)63 (F, m6)65 (m, o)66]   (���,���,���)	=	(1,	3,	2) 

26edo:   [(t, M6)76 (m, m7)77 (s
+, o)78]   (���,���,���)	=	(1,	2,	1)	

31edo:   [(M, F)90 (f, m6)91 (s, o)93]   (���,���,���)	=	(2,	3,	1) 

[(m6, m7)91 (M6, M7)92 (X, P12)98]  (���,���,���)	=	(6,	7,	1) 

53edo:   [(T, M)153 (m, f)154 (s, F)155]   (���,���,���)	=	(1,	2,	1) 

The12edo triple in this list is illustrated in Figure 9. It can be regarded as a consequence of 
the common difference (a minor third) between the first two matched pairs. The 
consequential match (C,Z) = (t,P12)38 is typical of matches derived this way, pairing a small 
interval with a large interval. Approximant-matching involving a large interval tends to 
produce a large fractional error, but when applied to the small interval the result is an error 
which is tolerable in absolute terms. 

 

 

 

    

 

 

 

 

Figure 9.  5-limit 12edo triple 
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Miscellaneous results 

Some	further	results	applying	to	approximant-matched	pair	triples	under	the	
assumptions	used	above	are	recorded	here	for	completeness.	

Equations	of	the	form	128	may	be	recast	in	a	variety	of	ways.	For	instance,	after	
multiplying	through	by	a	factor	(X/A)(Z/C),	eqn	128	becomes	

			
�

�
+

��

�
	+

�

�
+

����

���
= 0																																																																																																	(154)		

By	manipulating	eqns	119-121	and	their	counterparts	for	tempered	intervals	it	can	be	
shown	that	

			�� − �� + �� = 0																																																																																																								(155)		

			��′��′− ��′��′	 + 	��′��′= 0																																																																																															(156)				

It	then	follows	from	eqns	143-145	that	

�������
� − ���				 ����

� + 	 �������
� = 0																																																																																					(157)								

The vals of the six intervals comprising a triple can be expressed in terms of exactly three 
linearly independent basis vals. This is because the integers 	��′, 	��′ and ��′ are sufficient to 
define both the triple and three components of the temperament’s val. If the val had other 
than three independent components it would be under or over-specified by this procedure. For 
this reason there can be no ‘Pythagorean triples’ in our sense of the term. There is nothing to 
prevent the intervals comprising a triple featuring more than three prime factors, however. 

Finally we note that the relationship between � and � (eqn 9) is identical to that between 
rapidity and velocity (relative to light speed) in special relativity. This allows another 
interpretation (of uncertain significance) that can be attached to a result derived above: for 
four observers moving at relativistic speeds along a straight line, a relationship which is 
satisfied by certain velocity ratios  (eqn 128) is also satisfied by the corresponding rapidity 
ratios (eqn 134). 

Quartets of approximant-matched pair triples 
Certain ETs have been found to contain examples of a more complex structure formed from 
six approximant-matched interval pairs participating in four interconnected triples. This 
structure can be understood by means of the following theorem. 

If in some equal temperament defined by a val, three approximant-matched interval pairs 
(A,X), (B,Y) and (D,U) (where each interval may be either positive or negative) satisfy        
X – A = Y – B = U – D, the temperament contains four interconnected triples built from 
combinations of six approximant-matched interval pairs. 

The proof is as follows. Using the preceding results we can immediately identify three triples 
which we shall notate thus: 

 {(A,X) (B,Y) (C,Z)} {(A,X) (D,U) (E,V)} {(B,Y) (D,U) (F,W)} 

(where in this case we drop the tempered gauge subscript and relax the constraints relating to 
signs and relative magnitudes which normally apply with this notation). 

To prove the existence of a fourth triple we view eqn 134 as a relation between approximants 
a/x, b/y and c/z, and transform these approximants to frequency ratios ��/�, ��/�  and ��/�, 

where 

��/� =
� + �

� − �
, ��/� =

� + �

� − �
,										��/� =

� + �

� − �
																																																		(158) 



Since the approximants may in these cases have magnitude greater than one, the frequency 
ratios may be negative. To avoid the inconvenience of dealing with complex intervals we 
shall work with the ratios and approximants only, for which eqns 21 and 22 remain valid. 
Applying eqn 22 to eqn 134 and its counterparts for the two other triples yields 

��/�	��/�
�� 		��/� = 1																																																																																																														(159)	 

��/�
�� 	��/�	��/�

�� = 1																																																																																																															(160)		 

��/�	��/�
�� 		��/� = 1																																																																																																													(161)		 

Combining these three equations by multiplication we then obtain 

��/�	��/�
�� 		��/� = 1																																																																																																														(162)	 

and converting back to the approximant domain yields 

�

�
−

�

�
+

�

�
−

���

���
= 0																																																																																																						(163) 

By applying an identical process to the counterparts of eqn 135 on the assumption of 
consistency we obtain 

�′

�′
−

�′

�′
+

�′

�′
−

�′�′�′

�′�′�′
= 0																																																																																												(164) 

Since (C,Z) are (E,V) are matched, it then follows that (F,W) is also matched, so a fourth 
triple {(C,Z), (E,V), (F,W)} is established. 

Example: quartet of triples in 31edo 
A quartet of 7-limit approximant-matched triples in 31edo is shown in Figure 10 In this case 
all the featured intervals, if tuned to the nearest step, are consistent with the patent val. 

In this figure, vertices of a tetrahedron represent triples featuring approximant-matched pairs 
identified with the adjacent edges. The quartet of triples can be set out as follows: 

 

{ [(m, 9/7)88 (F, 7/5)90  (7/6, m7)91] [(m, 9/7)88 (M6, 14/9)92 (35/27, o)93]   

   [(F, 7/5)90  (M6, 14/9)92 (t, 7/3)95]  [(7/6, m7)91 (35/27, o)93 (t, 7/3)95]    } 

 

 

 

 

 

 

 

 

 

 

Figure 10. 7-limit quartet of triples in 31edo 
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Example: quartet of triples in 39edo 
Figure 11 shows a quartet of 5-limit approximant-matched triples in patent 39edo.  

 

 

 

 

 

 

 

 

 

 

Figure 11.  5-limit quartet of triples in patent 39edo 

 

Example: quartet of triples in 67edo 
Figure 12 shows a quartet of 5-limit approximant-matched triples in patent 67edo. 

 

 

 

 

 

 

 

 

 

 

Figure 12.  5-limit quartet of triples in patent 67edo 

 

Conclusions 

The bimodular approximation expresses the sizes of just intervals as simple fractions which 
we have termed bimodular approximants. While this rational approximation to the logarithm 
function has a long history as a method for estimating the sizes of small musical intervals, its 
relevance to larger intervals and equal temperaments has not previously been fully 
appreciated. In this context it has an explanatory power which arguably provides a more 
direct route to understanding certain aspects of equal temperaments (including equal 
divisions of non-octave intervals) than the frequently-aired type of explanation based on 
continued fractions. Closely related to this is its ability to provide a rationale for certain 
seemingly fortuitous near-rational relationships between intervals which have long been 
known to theorists. Bimodular commas express the degree to which such approximant-
derived relationships depart from exactness, and commas of this type are always present 
among those which an equal temperament shrinks to zero (tempers out).  

A space in which frequency difference is plotted against frequency sum provides a 
convenient framework for graphical presentations of the theory. In this space, just intervals 
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are represented by points with integer coordinates, and columns of such points form 
sequences of approximately equally spaced intervals (near-equal progressions) that require 
only slight adjustment to bring them into coincidence with equal temperaments. A region of 
the space enclosed by curved lines (the Jacana diagram) defines the precise relationship 
between just intervals and their nearest-step tunings in a specific equal temperament, and a 
variant of this diagram plotted on logarithmic axes (the Christmas tree diagram) highlights 
relationships between pairs of low-complexity intervals which are associated with distinctive 
characteristics of the temperament. Examples have also been found of more complex sets of 
relationships linking bimodular approximants with equal temperaments. 

This work is being extended to an investigation of other types of logarithmic approximation 
which show promise as tools for the study of tuning systems. 
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